User:Anthony.Sebastian/Sandbox-3: Difference between revisions
imported>Anthony.Sebastian No edit summary |
imported>Anthony.Sebastian (→model) |
||
Line 1: | Line 1: | ||
==model== | ==Hawking and Mlodinow’s model-dependent realism== | ||
Physicists Stephen W. Hawking and Leonard Mlodinow, in their book, ''The Grand Design'', assert that there cannot be a theory-independent , or picture-independent, concept of reality. They point out that either and earth-centered (Ptolemaic) or a sun-centered (Copernican) picture of reality can be made consistent with the motion of celestial bodies; that goldfish physicists living in a curved bowl, though observing curved paths of motion of bodies that we observe as linear, could still formulate predictive laws governing motion as they see it; that we cannot know whether we live in a simulated world, a virtual reality, that the simulators rendered self-consistent. Each of those concepts of reality are picture- or theory-dependent. | |||
Instead, Hawking and Mlodinow articulate a view of reality they call ''model-dependent realism'': | |||
{|align="right" cellpadding="10" style="background:lightgray; width:35%; border: 1px solid #aaa; margin:20px; font-size: 93%; font-family: Gill Sans MT;" | |||
|…we will adopt a view that we will call model-dependent realism: the idea that a physical theory or world picture is a model (generally of a mathematical nature) and a set of rules that connect the elements of the model to observations. This provides a framework with which to interpret modern science? | |||
: —[[Stephen Hawking]] and [[Leonard Mlodinow]]<ref name=hawkinggrand>Hawkin SW, Mlodinow L. (2010) ''The Grand Design''. New York: Bantom Books. elSBN: 978-0-553-90707-0 (Kindle edition) | [http://books.google.com/books?id=RoO9jkV-yzIC&dq=the+grand+design&source=gbs_navlinks_s Google Books preview].</ref> | |||
====refs==== | |||
<referenes/> | |||
==testt== | ==testt== |
Revision as of 18:28, 13 April 2011
Hawking and Mlodinow’s model-dependent realism
Physicists Stephen W. Hawking and Leonard Mlodinow, in their book, The Grand Design, assert that there cannot be a theory-independent , or picture-independent, concept of reality. They point out that either and earth-centered (Ptolemaic) or a sun-centered (Copernican) picture of reality can be made consistent with the motion of celestial bodies; that goldfish physicists living in a curved bowl, though observing curved paths of motion of bodies that we observe as linear, could still formulate predictive laws governing motion as they see it; that we cannot know whether we live in a simulated world, a virtual reality, that the simulators rendered self-consistent. Each of those concepts of reality are picture- or theory-dependent.
Instead, Hawking and Mlodinow articulate a view of reality they call model-dependent realism:
…we will adopt a view that we will call model-dependent realism: the idea that a physical theory or world picture is a model (generally of a mathematical nature) and a set of rules that connect the elements of the model to observations. This provides a framework with which to interpret modern science?
refs<referenes/> testt
Various codesspecial textbox
Wordleshttp://www.wordle.net/show/wrdl/2576041/Citizendium
Word TableSee this: More text... Edited Version:
DIM_CHRONRussian Events: HISTORY OF RUSSIA. From: History World. PhilBiolElliott Sober speaks to the definition of the philosophy of biology:
refs
ply
This is a paragraph with some text in it. This is a paragraph with some text in it. This is a paragraph with some text in it. This is a paragraph with some text in it.
Autopoiesis refThe ref.[1]
references
UTC timeTo get UTC time now, edit this section (click edit), follow instructions, then save page.
Table Constructed in Microsoft Word 2007a Name of Object Mass (kg) Color Location Number of Objects at Location A Fabulous Object in Every Respect 43.7 Blue-Red-Orange Titan 62 Teddy 6.8 Serene Polar Station #6789 7 Universal Tiger 5689 Striped Green Here 0.65 Object-4 333 Forty Shades of Bright Yellow Green-Gray There 222 Lost in Space-Time Continuum 0 Dark Lost 8 Reality ¬-98 Spectral Everywhere ∞ a Quickly made. Re lemma
Survival of the fittest in relation to the environment has importantly influenced the evolved structure and function of Homo sapiens, and given the absolute requirement for food consumption for survival, food as environment played a fundamental role in the determination of human structure and function as the species evolved from its most ancient ancestors. [e]
illustration wanted template{{IllW}} {{illustration}} Adiponectin
Adiponectin, a hormone (a.k.a., adipokine, adipocytokine) produced by adipose tissue cells — adipocytes — and secreted into the bloodstream, induces beneficial effects in medical conditions related to obesity, including type 2 diabetes mellitus, atherosclerosis, chronic inflammation, and cancer.[1] [2] [3] [4] Adiponectin alters insulin receptor function, diminishes the action of insulin in the liver, alters the metabolism of free fatty acids by liver cells, and protects against inflammation. Adults and children (humans) who have non-alcoholic fatty liver disease (NAFLD) show decreased plasma concentrations of adiponectin. Inasmuch as insulin resistance in the liver, and hyperinsulinemia, feature in NAFLD, those finding suggest a link between fatty liver and insulin resistance perhaps in part to reduced adiponectin. NAFLD also features elevated levels of leptin, an adipokine that reduces appetite but also interferes with insulin action in the brain.[6] [7] [8] [9] [10] [11] Adiponectin exhibits the following actions:[12] [13] [14] [15] [16] [17] [18] [19]
In patients who have had an acute myocardial infarction, the risk of subsequent major adverse cardiovascular events is lowest in patients with the highest plasma concentrations of adiponectin. [20]
Some researchers note that in postmenopausal women serum adiponectin concentrations correlate inversely with bone mineral density.[21]
Book review of Language Evolution
A ban in the 1866s by the French Academy of Sciences on publications about the origin of human language must have been one of the strangest bans in the history of sciences. Yet it was highly effective. After the ban, scientists and interested laymen had to wait for more than a century to hold a textbook on language evolution in their hands. Editors Chritiansen and Kirby present, in Language Evolution, a compilation of essays by a diverse group of respected researchers, is amongst the first books that try to tackle what is arguably one of the hardest scientific problems. The editors set themselves the ambitious target of creating an up-to-date book about this emerging field, and they have to be congratulated for their efforts. Linguists, cognitive scientists, behavioural ecologists, and theoretical biologists all offer their view on the origin of human language and, refreshingly, do not shy from pointing out the real or assumed weaknesses of the other approaches. One of the main themes of the book is the evolutionary approach and the importance of biological structures and properties that were co-opted in the development of language (pre-adaptations). In one essay, Michael Studdert-Kenedy and Louis Goldstein propose that speech, as a motor function, draws on phylogenetically ancient mammalian oral capacities for sucking, licking, swallowing, and chewing. Thus, our hominid ancestors adopted an apparatus already divided neuroanatomically into discrete components. Complementing this evidence, Marc Hauser and Tecumseh Fitch compare human speech production and perception with that of nonhuman species. They conclude that many traits that were formerly thought to have evolved specifically for speech (such as having a descended larynx or categorical perception) are also present in other species. But perhaps the most interesting idea about pre-adaptation comes from the work of neuroscientist Michael Arbib on ‘mirror’ neurons in monkeys. These neurons are a subset of the grasp-related premotor neurons that discharge not only, as other premotor neurons do, when the monkey executes a certain class of actions, but also when the monkey observes more or less similarly meaningful hand movements made by the experimenter (or by another monkey). The area in which these grasp-related neurons are found is analogous with the Broca's area in human brains, which is involved in assessing the syntax of words. This observation serves as the basis for the mirror-system hypothesis, which postulates that Broca's area in humans evolved from a basic mechanism not originally related to communication but rather from the mirror system for grasping in the common ancestor of monkey and human. As a result, the mirror system provides a possible ‘neural link’ in the evolution of human language. There is still much debate about the selection pressures that led to the evolution of language. Observing the overabundance of potential selective scenarios for why language evolved, the linguist Derek Bickerton voices his scepticism: ‘The fact that these and similar explanations flourish side by side tells one immediately not enough constraints are being used to limit possible explanations.’ One frequent source of confusion, he notes, is equating language with speech by not distinguishing between modality, lexicon, and structure. Hauser and Fitch share Bickerton's scepticism and urge scientists to rely more on the traditional comparative approach, which was always the strength of Darwinian evolutionary theory. Primatologist Robin Dunbar, who originally proposed that grooming (group bonding) could have provided the stimulus for language, dismisses two other possible scenarios—hunting and tool-making—as potential ecological contexts for the evolution of human language. Gestural origins are also dismissed in his theory, because gestural languages do not seem to develop spontaneously and also require a line-of-sight contact making them useless at night. Interestingly, Steven Pinker rules out both Dunbar's theory of grooming and Geoffrey Miller's theory of sexual selection, whereas Bickerton rules out grooming, gossip, mating contract, and Machiavellian intelligence as likely contexts for the origin of human language. Also under fire in the book is the idea that the human brain is somehow equipped at birth with a ‘universal grammar’ out of which all human languages later develop. Several authors try to provide alternatives to innate predispositions, such as the importance of function to categorization (Michael Tomasello) and the importance of cultural transmission to the structure of language (Simon Kirby and Morton Christiansen). Arbib explicitly questions the traditional Chomskyan theory of innate linguistic predispositions and argues that what humans have and had in the past is ‘language readiness’ rather than a fixed universal grammar. Neuroscientist Terrence Deacon also puts an alternative theory forward. According to Deacon, many of the language universals reflect semiotic constraints inherent in the requirements for producing symbolic reference rather than innate predispositions. Thus, neither evolved innate predispositions nor culturally evolved and transmitted regularities can be considered as the ultimate source of language universals. He draws a parallel with mathematical operations (addition, subtraction, etc.) and with prime numbers. Symbolic reference, he argues, is constrained by the structure it refers to. The editors claim, in the light of this diversity, that ‘this book is intended to bring together, for the first time, all the major perspectives on language evolution’. We have two concerns with this aim. First, two books of the same organization and scope have been published in the past six years based on the material from language evolution conferences (Hurford et al. 1998; Knight et al. 2000). Although this first concern might be just splitting hairs, the second is more substantial: several crucial aspects of language evolution are not represented at all or are just touched superficially. One of these missing themes is the selective advantage of early language. As discussed, many of the contributors express their scepticism towards the selective scenarios found in the literature—and indeed towards such constructions in general—but there is no review and no balanced evaluation of these selective scenarios. Since one of the key questions of language evolution is the selective advantage of early language, the lack of such a review is a major weakness. A balanced account could have been presented even if the editors and most of the contributors are frustrated by the plethora of selective scenarios. Related to the possible selective advantage of language is the issue of genetic background. Although there is mention of the so-called FOX genes—some mutations of which are associated with language disorders—there is no detailed discussion of our current knowledge of genetics related to language. Another lightly treated theme is the neural basis of language and language evolution. Understandably it is one of the most difficult issues concerning human language, and no one expects the editors or any of the contributors to come up with an answer to all the questions. What is missing again is a good survey outlining the problems and the current findings of the field. The weaknesses of the book come from its structure and organization. The editors, instead of outlining a structure and asking specialists to contribute to that structure, appear to have let every contributor write freely about their current ideas and current research without regard to the bigger picture. This definitely shows the interests of the contributors and outlines the current state of the art; it leaves gaps, however, in the coverage of crucial topics related to the evolution of human language. References: Hurford JR, Studdert-Kennedy M, Knight C (1998) Approaches to the evolution of language: Social and cognitive bases. Cambridge: Cambridge University Press. 452 p. Knight C, Studdert-Kennedy M, Hurford JR (2000) The evolutionary emergence of language: Social function and the origins of linguistic form. Cambridge: Cambridge University Press. 438 p. refs
consider for user page
Articles I startedBiographies: Alcmaeon; John Dalton; Vesalius [Andreas Vesalius]; Alfred Russel Wallace; Biology: Life..... epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Test E&BIn the science of biology the concept of energy occupies a central and critical position, inasmuch as living systems could not exist without an ultimate source of energy from the external non-biological world,[2] [3] and could not have emerged from the abiotic world in the first place.[4] refs
Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[1]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Boxed epigraphs
BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a> Refs
epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[2]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Liven in croton, so italy Physician-pilosopher Strong medical tradition developed in crotonj Pythagorean or not? Aristotle wrote a separate book on Alcmaeon The overwhelming majority of scholars since 1950 have accordingly regarded Alcmaeon as a figure independent of the Pythagoreans (e.g., Guthrie 1962 and Lloyd 1991, 167; Zhmud 1997, 70-71, is one of the few exceptions), although, as a fellow citizen of Croton, he will have been familiar with their thought. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> One group of scholars dates the publication of Alcmaeon's book to around 500 (Burkert 1972, 292; Kirk, Raven, Schofield 1983, 339 [early 5th]) so that he would have been born around 540. Another group has him born around 510 so that his book would have been published in 470 or later (Guthrie 1962, 358 [480-440 BC]; Lloyd 1991, 168 [490-430 BC]). In either case Alcmaeon probably wrote before Empedocles, Anaxagoras and Philolaus. He is either the contemporary or the predecessor of Parmenides. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> He thus takes the stance of the scientist who draws inferences from what can be perceived, and he implicitly rejects the claims of those who base their account of the world on the certainty of a divine revelation (e.g., Pythagoras, Parmenides B1). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Socrates connects this view of the brain with an empiricist epistemology, which Aristotle will later adopt (Posterior Analytics 100a3 ff.). This epistemology involves three steps: first, the brain provides the sensations of hearing, sight and smell, then, memory and opinion arise from these, and finally, when memory and opinion achieve fixity, knowledge arises. Some scholars suppose that this entire epistemology is Alcmaeon's (e.g., Barnes 1982, 149 ff.), while others more cautiously note that we only have explicit evidence that Alcmaeon took the first step (e.g., Vlastos 1970, 47, n.8). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> he only conclusions we can reasonably draw about Alcmaeon from the passage are that he excised the eyeball of an animal and observed poroi (channels, i.e. the optic nerve) leading from the eye in the direction of the brain (Lloyd 1975). Theophrastus' account of Alcmaeon's theory of sensation implies that he thought that there were such channels leading from each of the senses to the brain: All the senses are connected in some way with the brain. As a result, they are incapacitated when it is disturbed or changes its place, for it then stops the channels, through which the senses operate. (DK, A5) Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> It would be a serious mistake then to say that Alcmaeon discovered dissection or that he was the father of anatomy, since there is no evidence that he used dissection systematically or even that he did more than excise a single eyeball. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> The idea that health depends on a balance of opposed factors in the body is a commonplace in Greek medical writers. Although Alcmaeon is the earliest figure to whom such a conception of health is attributed, it may well be that he is not presenting an original thesis but rather drawing on the earlier medical tradition in Croton. Perhaps what is distinctive to Alcmaeon is the use of the specific political metaphor and terminology (isonomia, monarchia). Just as Anaximander explained the order of the cosmos in terms of justice in the city-state, so Alcmaeon used a political metaphor to explain the order of the human body. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Contrary to a popular Greek view, which regarded the father alone as providing seed, a view that would be followed by Aristotle (Lloyd 1983, 86 ff.), Alcmaeon argued that both parents contribute seed (DK, A13) and that the child takes the sex of the parent who contributes the most seed (DK, A14). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
More significantly, he used analogies with animals and plants in developing his accounts of human physiology. Thus, the pubic hair that develops when human males are about to produce seed for the first time at age fourteen is analogous to the flowering of plants before they produce seed (DK, A15); milk in mammals is analogous to egg white in birds (DK, A16). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Alcmaeon agrees with these Pythagoreans in regarding the opposites as principles of things. Aristotle complains, however, that Alcmaeon did not arrive at a definite set of opposites but spoke haphazardly of white, black, sweet, bitter, good, bad, large and small, and only threw in vague comments about the remaining opposites. It may well be that Alcmaeon's primary discussion of opposites was in relation to his account of the human body (DK, B4; see the discussion of his medical theories above). Aristotle's language supports this suggestion to some extent, when he summarizes Alcmaeon's view as that "the majority of human things (tôn anthrôpinôn) are in pairs" (Metaph. 986a31). Isocrates (DK, A3) says that Alcmaeon, in contrast to Empedocles, who postulated four elements, said that there were only two, and, according to a heterodox view, Alcmaeon posited fire and earth as basic elements (Lebedev 1993). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Long, A. A., (ed.), 1999, The Cambridge Companion to Early Greek Philosophy, Cambridge: Cambridge University Press Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Taylor, C. C. W., (ed.), 1997, Routledge History of Philosophy, Volume 1: From the Beginning to Plato, London: Routledge Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
Re lemma
adipoAdiponectinAdiponectin, a hormone (a.k.a., adipokine, adipocytokine) produced by adipose tissue cells — adipocytes — and secreted into the bloodstream, induces beneficial effects in medical conditions related to obesity, including type 2 diabetes mellitus, atherosclerosis, chronic inflammation, and cancer.[1] [2] [3] [4] Adiponectin alters insulin receptor function, diminishes the action of insulin in the liver, alters the metabolism of free fatty acids by liver cells, and protects against inflammation. Adults and children (humans) who have non-alcoholic fatty liver disease (NAFLD) show decreased plasma concentrations of adiponectin. Inasmuch as insulin resistance in the liver, and hyperinsulinemia, feature in NAFLD, those finding suggest a link between fatty liver and insulin resistance perhaps in part to reduced adiponectin. NAFLD also features elevated levels of leptin, an adipokine that reduces appetite but also interferes with insulin action in the brain.[5] [6] [7] [8] [9] [10] Adiponectin exhibits the following actions:[11] [12] [13] [14] [15] [16] [17] [18]
In patients who have had an acute myocardial infarction, the risk of subsequent major adverse cardiovascular events is lowest in patients with the highest plasma concentrations of adiponectin. [19] Some researchers note that in postmenopausal women serum adiponectin concentrations correlate inversely with bone mineral density.[20] Book review of Language Evolution
A ban in the 1866s by the French Academy of Sciences on publications about the origin of human language must have been one of the strangest bans in the history of sciences. Yet it was highly effective. After the ban, scientists and interested laymen had to wait for more than a century to hold a textbook on language evolution in their hands. Editors Chritiansen and Kirby present, in Language Evolution, a compilation of essays by a diverse group of respected researchers, is amongst the first books that try to tackle what is arguably one of the hardest scientific problems. The editors set themselves the ambitious target of creating an up-to-date book about this emerging field, and they have to be congratulated for their efforts. Linguists, cognitive scientists, behavioural ecologists, and theoretical biologists all offer their view on the origin of human language and, refreshingly, do not shy from pointing out the real or assumed weaknesses of the other approaches. One of the main themes of the book is the evolutionary approach and the importance of biological structures and properties that were co-opted in the development of language (pre-adaptations). In one essay, Michael Studdert-Kenedy and Louis Goldstein propose that speech, as a motor function, draws on phylogenetically ancient mammalian oral capacities for sucking, licking, swallowing, and chewing. Thus, our hominid ancestors adopted an apparatus already divided neuroanatomically into discrete components. Complementing this evidence, Marc Hauser and Tecumseh Fitch compare human speech production and perception with that of nonhuman species. They conclude that many traits that were formerly thought to have evolved specifically for speech (such as having a descended larynx or categorical perception) are also present in other species. But perhaps the most interesting idea about pre-adaptation comes from the work of neuroscientist Michael Arbib on ‘mirror’ neurons in monkeys. These neurons are a subset of the grasp-related premotor neurons that discharge not only, as other premotor neurons do, when the monkey executes a certain class of actions, but also when the monkey observes more or less similarly meaningful hand movements made by the experimenter (or by another monkey). The area in which these grasp-related neurons are found is analogous with the Broca's area in human brains, which is involved in assessing the syntax of words. This observation serves as the basis for the mirror-system hypothesis, which postulates that Broca's area in humans evolved from a basic mechanism not originally related to communication but rather from the mirror system for grasping in the common ancestor of monkey and human. As a result, the mirror system provides a possible ‘neural link’ in the evolution of human language. There is still much debate about the selection pressures that led to the evolution of language. Observing the overabundance of potential selective scenarios for why language evolved, the linguist Derek Bickerton voices his scepticism: ‘The fact that these and similar explanations flourish side by side tells one immediately not enough constraints are being used to limit possible explanations.’ One frequent source of confusion, he notes, is equating language with speech by not distinguishing between modality, lexicon, and structure. Hauser and Fitch share Bickerton's scepticism and urge scientists to rely more on the traditional comparative approach, which was always the strength of Darwinian evolutionary theory. Primatologist Robin Dunbar, who originally proposed that grooming (group bonding) could have provided the stimulus for language, dismisses two other possible scenarios—hunting and tool-making—as potential ecological contexts for the evolution of human language. Gestural origins are also dismissed in his theory, because gestural languages do not seem to develop spontaneously and also require a line-of-sight contact making them useless at night. Interestingly, Steven Pinker rules out both Dunbar's theory of grooming and Geoffrey Miller's theory of sexual selection, whereas Bickerton rules out grooming, gossip, mating contract, and Machiavellian intelligence as likely contexts for the origin of human language. Also under fire in the book is the idea that the human brain is somehow equipped at birth with a ‘universal grammar’ out of which all human languages later develop. Several authors try to provide alternatives to innate predispositions, such as the importance of function to categorization (Michael Tomasello) and the importance of cultural transmission to the structure of language (Simon Kirby and Morton Christiansen). Arbib explicitly questions the traditional Chomskyan theory of innate linguistic predispositions and argues that what humans have and had in the past is ‘language readiness’ rather than a fixed universal grammar. Neuroscientist Terrence Deacon also puts an alternative theory forward. According to Deacon, many of the language universals reflect semiotic constraints inherent in the requirements for producing symbolic reference rather than innate predispositions. Thus, neither evolved innate predispositions nor culturally evolved and transmitted regularities can be considered as the ultimate source of language universals. He draws a parallel with mathematical operations (addition, subtraction, etc.) and with prime numbers. Symbolic reference, he argues, is constrained by the structure it refers to. The editors claim, in the light of this diversity, that ‘this book is intended to bring together, for the first time, all the major perspectives on language evolution’. We have two concerns with this aim. First, two books of the same organization and scope have been published in the past six years based on the material from language evolution conferences (Hurford et al. 1998; Knight et al. 2000). Although this first concern might be just splitting hairs, the second is more substantial: several crucial aspects of language evolution are not represented at all or are just touched superficially. One of these missing themes is the selective advantage of early language. As discussed, many of the contributors express their scepticism towards the selective scenarios found in the literature—and indeed towards such constructions in general—but there is no review and no balanced evaluation of these selective scenarios. Since one of the key questions of language evolution is the selective advantage of early language, the lack of such a review is a major weakness. A balanced account could have been presented even if the editors and most of the contributors are frustrated by the plethora of selective scenarios. Related to the possible selective advantage of language is the issue of genetic background. Although there is mention of the so-called FOX genes—some mutations of which are associated with language disorders—there is no detailed discussion of our current knowledge of genetics related to language. Another lightly treated theme is the neural basis of language and language evolution. Understandably it is one of the most difficult issues concerning human language, and no one expects the editors or any of the contributors to come up with an answer to all the questions. What is missing again is a good survey outlining the problems and the current findings of the field. The weaknesses of the book come from its structure and organization. The editors, instead of outlining a structure and asking specialists to contribute to that structure, appear to have let every contributor write freely about their current ideas and current research without regard to the bigger picture. This definitely shows the interests of the contributors and outlines the current state of the art; it leaves gaps, however, in the coverage of crucial topics related to the evolution of human language. References: Hurford JR, Studdert-Kennedy M, Knight C (1998) Approaches to the evolution of language: Social and cognitive bases. Cambridge: Cambridge University Press. 452 p. Knight C, Studdert-Kennedy M, Hurford JR (2000) The evolutionary emergence of language: Social function and the origins of linguistic form. Cambridge: Cambridge University Press. 438 p. refs
consider for user page
Articles I startedBiographies: Alcmaeon; John Dalton; Vesalius [Andreas Vesalius]; Alfred Russel Wallace; Biology: Life..... epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Test E&BIn the science of biology the concept of energy occupies a central and critical position, inasmuch as living systems could not exist without an ultimate source of energy from the external non-biological world,[2] [3] and could not have emerged from the abiotic world in the first place.[4] Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[5]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[2]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Liven in croton, so italy Physician-pilosopher Strong medical tradition developed in crotonj Pythagorean or not? Aristotle wrote a separate book on Alcmaeon The overwhelming majority of scholars since 1950 have accordingly regarded Alcmaeon as a figure independent of the Pythagoreans (e.g., Guthrie 1962 and Lloyd 1991, 167; Zhmud 1997, 70-71, is one of the few exceptions), although, as a fellow citizen of Croton, he will have been familiar with their thought. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> One group of scholars dates the publication of Alcmaeon's book to around 500 (Burkert 1972, 292; Kirk, Raven, Schofield 1983, 339 [early 5th]) so that he would have been born around 540. Another group has him born around 510 so that his book would have been published in 470 or later (Guthrie 1962, 358 [480-440 BC]; Lloyd 1991, 168 [490-430 BC]). In either case Alcmaeon probably wrote before Empedocles, Anaxagoras and Philolaus. He is either the contemporary or the predecessor of Parmenides. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> He thus takes the stance of the scientist who draws inferences from what can be perceived, and he implicitly rejects the claims of those who base their account of the world on the certainty of a divine revelation (e.g., Pythagoras, Parmenides B1). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Socrates connects this view of the brain with an empiricist epistemology, which Aristotle will later adopt (Posterior Analytics 100a3 ff.). This epistemology involves three steps: first, the brain provides the sensations of hearing, sight and smell, then, memory and opinion arise from these, and finally, when memory and opinion achieve fixity, knowledge arises. Some scholars suppose that this entire epistemology is Alcmaeon's (e.g., Barnes 1982, 149 ff.), while others more cautiously note that we only have explicit evidence that Alcmaeon took the first step (e.g., Vlastos 1970, 47, n.8). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> he only conclusions we can reasonably draw about Alcmaeon from the passage are that he excised the eyeball of an animal and observed poroi (channels, i.e. the optic nerve) leading from the eye in the direction of the brain (Lloyd 1975). Theophrastus' account of Alcmaeon's theory of sensation implies that he thought that there were such channels leading from each of the senses to the brain: All the senses are connected in some way with the brain. As a result, they are incapacitated when it is disturbed or changes its place, for it then stops the channels, through which the senses operate. (DK, A5) Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> It would be a serious mistake then to say that Alcmaeon discovered dissection or that he was the father of anatomy, since there is no evidence that he used dissection systematically or even that he did more than excise a single eyeball. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> The idea that health depends on a balance of opposed factors in the body is a commonplace in Greek medical writers. Although Alcmaeon is the earliest figure to whom such a conception of health is attributed, it may well be that he is not presenting an original thesis but rather drawing on the earlier medical tradition in Croton. Perhaps what is distinctive to Alcmaeon is the use of the specific political metaphor and terminology (isonomia, monarchia). Just as Anaximander explained the order of the cosmos in terms of justice in the city-state, so Alcmaeon used a political metaphor to explain the order of the human body. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Contrary to a popular Greek view, which regarded the father alone as providing seed, a view that would be followed by Aristotle (Lloyd 1983, 86 ff.), Alcmaeon argued that both parents contribute seed (DK, A13) and that the child takes the sex of the parent who contributes the most seed (DK, A14). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
More significantly, he used analogies with animals and plants in developing his accounts of human physiology. Thus, the pubic hair that develops when human males are about to produce seed for the first time at age fourteen is analogous to the flowering of plants before they produce seed (DK, A15); milk in mammals is analogous to egg white in birds (DK, A16). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Alcmaeon agrees with these Pythagoreans in regarding the opposites as principles of things. Aristotle complains, however, that Alcmaeon did not arrive at a definite set of opposites but spoke haphazardly of white, black, sweet, bitter, good, bad, large and small, and only threw in vague comments about the remaining opposites. It may well be that Alcmaeon's primary discussion of opposites was in relation to his account of the human body (DK, B4; see the discussion of his medical theories above). Aristotle's language supports this suggestion to some extent, when he summarizes Alcmaeon's view as that "the majority of human things (tôn anthrôpinôn) are in pairs" (Metaph. 986a31). Isocrates (DK, A3) says that Alcmaeon, in contrast to Empedocles, who postulated four elements, said that there were only two, and, according to a heterodox view, Alcmaeon posited fire and earth as basic elements (Lebedev 1993). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Long, A. A., (ed.), 1999, The Cambridge Companion to Early Greek Philosophy, Cambridge: Cambridge University Press Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Taylor, C. C. W., (ed.), 1997, Routledge History of Philosophy, Volume 1: From the Beginning to Plato, London: Routledge Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
ply
This is a paragraph with some text in it. This is a paragraph with some text in it. This is a paragraph with some text in it. This is a paragraph with some text in it.
references
UTC timeTo get UTC time now, edit this section (click edit), follow instructions, then save page.
Re lemma
Survival of the fittest in relation to the environment has importantly influenced the evolved structure and function of Homo sapiens, and given the absolute requirement for food consumption for survival, food as environment played a fundamental role in the determination of human structure and function as the species evolved from its most ancient ancestors. [e]
adipoAdiponectin
Adiponectin, a hormone (a.k.a., adipokine, adipocytokine) produced by adipose tissue cells — adipocytes — and secreted into the bloodstream, induces beneficial effects in medical conditions related to obesity, including type 2 diabetes mellitus, atherosclerosis, chronic inflammation, and cancer.[2] [3] [4] [5] Adiponectin alters insulin receptor function, diminishes the action of insulin in the liver, alters the metabolism of free fatty acids by liver cells, and protects against inflammation. Adults and children (humans) who have non-alcoholic fatty liver disease (NAFLD) show decreased plasma concentrations of adiponectin. Inasmuch as insulin resistance in the liver, and hyperinsulinemia, feature in NAFLD, those finding suggest a link between fatty liver and insulin resistance perhaps in part to reduced adiponectin. NAFLD also features elevated levels of leptin, an adipokine that reduces appetite but also interferes with insulin action in the brain.[6] [7] [8] [9] [10] [11] Adiponectin exhibits the following actions:[12] [13] [14] [15] [16] [17] [18] [19]
In patients who have had an acute myocardial infarction, the risk of subsequent major adverse cardiovascular events is lowest in patients with the highest plasma concentrations of adiponectin. [20]
Some researchers note that in postmenopausal women serum adiponectin concentrations correlate inversely with bone mineral density.[21]
Book review of Language Evolution
A ban in the 1866s by the French Academy of Sciences on publications about the origin of human language must have been one of the strangest bans in the history of sciences. Yet it was highly effective. After the ban, scientists and interested laymen had to wait for more than a century to hold a textbook on language evolution in their hands. Editors Chritiansen and Kirby present, in Language Evolution, a compilation of essays by a diverse group of respected researchers, is amongst the first books that try to tackle what is arguably one of the hardest scientific problems. The editors set themselves the ambitious target of creating an up-to-date book about this emerging field, and they have to be congratulated for their efforts. Linguists, cognitive scientists, behavioural ecologists, and theoretical biologists all offer their view on the origin of human language and, refreshingly, do not shy from pointing out the real or assumed weaknesses of the other approaches. One of the main themes of the book is the evolutionary approach and the importance of biological structures and properties that were co-opted in the development of language (pre-adaptations). In one essay, Michael Studdert-Kenedy and Louis Goldstein propose that speech, as a motor function, draws on phylogenetically ancient mammalian oral capacities for sucking, licking, swallowing, and chewing. Thus, our hominid ancestors adopted an apparatus already divided neuroanatomically into discrete components. Complementing this evidence, Marc Hauser and Tecumseh Fitch compare human speech production and perception with that of nonhuman species. They conclude that many traits that were formerly thought to have evolved specifically for speech (such as having a descended larynx or categorical perception) are also present in other species. But perhaps the most interesting idea about pre-adaptation comes from the work of neuroscientist Michael Arbib on ‘mirror’ neurons in monkeys. These neurons are a subset of the grasp-related premotor neurons that discharge not only, as other premotor neurons do, when the monkey executes a certain class of actions, but also when the monkey observes more or less similarly meaningful hand movements made by the experimenter (or by another monkey). The area in which these grasp-related neurons are found is analogous with the Broca's area in human brains, which is involved in assessing the syntax of words. This observation serves as the basis for the mirror-system hypothesis, which postulates that Broca's area in humans evolved from a basic mechanism not originally related to communication but rather from the mirror system for grasping in the common ancestor of monkey and human. As a result, the mirror system provides a possible ‘neural link’ in the evolution of human language. There is still much debate about the selection pressures that led to the evolution of language. Observing the overabundance of potential selective scenarios for why language evolved, the linguist Derek Bickerton voices his scepticism: ‘The fact that these and similar explanations flourish side by side tells one immediately not enough constraints are being used to limit possible explanations.’ One frequent source of confusion, he notes, is equating language with speech by not distinguishing between modality, lexicon, and structure. Hauser and Fitch share Bickerton's scepticism and urge scientists to rely more on the traditional comparative approach, which was always the strength of Darwinian evolutionary theory. Primatologist Robin Dunbar, who originally proposed that grooming (group bonding) could have provided the stimulus for language, dismisses two other possible scenarios—hunting and tool-making—as potential ecological contexts for the evolution of human language. Gestural origins are also dismissed in his theory, because gestural languages do not seem to develop spontaneously and also require a line-of-sight contact making them useless at night. Interestingly, Steven Pinker rules out both Dunbar's theory of grooming and Geoffrey Miller's theory of sexual selection, whereas Bickerton rules out grooming, gossip, mating contract, and Machiavellian intelligence as likely contexts for the origin of human language. Also under fire in the book is the idea that the human brain is somehow equipped at birth with a ‘universal grammar’ out of which all human languages later develop. Several authors try to provide alternatives to innate predispositions, such as the importance of function to categorization (Michael Tomasello) and the importance of cultural transmission to the structure of language (Simon Kirby and Morton Christiansen). Arbib explicitly questions the traditional Chomskyan theory of innate linguistic predispositions and argues that what humans have and had in the past is ‘language readiness’ rather than a fixed universal grammar. Neuroscientist Terrence Deacon also puts an alternative theory forward. According to Deacon, many of the language universals reflect semiotic constraints inherent in the requirements for producing symbolic reference rather than innate predispositions. Thus, neither evolved innate predispositions nor culturally evolved and transmitted regularities can be considered as the ultimate source of language universals. He draws a parallel with mathematical operations (addition, subtraction, etc.) and with prime numbers. Symbolic reference, he argues, is constrained by the structure it refers to. The editors claim, in the light of this diversity, that ‘this book is intended to bring together, for the first time, all the major perspectives on language evolution’. We have two concerns with this aim. First, two books of the same organization and scope have been published in the past six years based on the material from language evolution conferences (Hurford et al. 1998; Knight et al. 2000). Although this first concern might be just splitting hairs, the second is more substantial: several crucial aspects of language evolution are not represented at all or are just touched superficially. One of these missing themes is the selective advantage of early language. As discussed, many of the contributors express their scepticism towards the selective scenarios found in the literature—and indeed towards such constructions in general—but there is no review and no balanced evaluation of these selective scenarios. Since one of the key questions of language evolution is the selective advantage of early language, the lack of such a review is a major weakness. A balanced account could have been presented even if the editors and most of the contributors are frustrated by the plethora of selective scenarios. Related to the possible selective advantage of language is the issue of genetic background. Although there is mention of the so-called FOX genes—some mutations of which are associated with language disorders—there is no detailed discussion of our current knowledge of genetics related to language. Another lightly treated theme is the neural basis of language and language evolution. Understandably it is one of the most difficult issues concerning human language, and no one expects the editors or any of the contributors to come up with an answer to all the questions. What is missing again is a good survey outlining the problems and the current findings of the field. The weaknesses of the book come from its structure and organization. The editors, instead of outlining a structure and asking specialists to contribute to that structure, appear to have let every contributor write freely about their current ideas and current research without regard to the bigger picture. This definitely shows the interests of the contributors and outlines the current state of the art; it leaves gaps, however, in the coverage of crucial topics related to the evolution of human language. References: Hurford JR, Studdert-Kennedy M, Knight C (1998) Approaches to the evolution of language: Social and cognitive bases. Cambridge: Cambridge University Press. 452 p. Knight C, Studdert-Kennedy M, Hurford JR (2000) The evolutionary emergence of language: Social function and the origins of linguistic form. Cambridge: Cambridge University Press. 438 p. refs
consider for user page
Articles I startedBiographies: Alcmaeon; John Dalton; Vesalius [Andreas Vesalius]; Alfred Russel Wallace; Biology: Life..... epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Test E&BIn the science of biology the concept of energy occupies a central and critical position, inasmuch as living systems could not exist without an ultimate source of energy from the external non-biological world,[2] [3] and could not have emerged from the abiotic world in the first place.[4] Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[5]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a> Refs
epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[2]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Liven in croton, so italy Physician-pilosopher Strong medical tradition developed in crotonj Pythagorean or not? Aristotle wrote a separate book on Alcmaeon The overwhelming majority of scholars since 1950 have accordingly regarded Alcmaeon as a figure independent of the Pythagoreans (e.g., Guthrie 1962 and Lloyd 1991, 167; Zhmud 1997, 70-71, is one of the few exceptions), although, as a fellow citizen of Croton, he will have been familiar with their thought. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> One group of scholars dates the publication of Alcmaeon's book to around 500 (Burkert 1972, 292; Kirk, Raven, Schofield 1983, 339 [early 5th]) so that he would have been born around 540. Another group has him born around 510 so that his book would have been published in 470 or later (Guthrie 1962, 358 [480-440 BC]; Lloyd 1991, 168 [490-430 BC]). In either case Alcmaeon probably wrote before Empedocles, Anaxagoras and Philolaus. He is either the contemporary or the predecessor of Parmenides. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> He thus takes the stance of the scientist who draws inferences from what can be perceived, and he implicitly rejects the claims of those who base their account of the world on the certainty of a divine revelation (e.g., Pythagoras, Parmenides B1). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Socrates connects this view of the brain with an empiricist epistemology, which Aristotle will later adopt (Posterior Analytics 100a3 ff.). This epistemology involves three steps: first, the brain provides the sensations of hearing, sight and smell, then, memory and opinion arise from these, and finally, when memory and opinion achieve fixity, knowledge arises. Some scholars suppose that this entire epistemology is Alcmaeon's (e.g., Barnes 1982, 149 ff.), while others more cautiously note that we only have explicit evidence that Alcmaeon took the first step (e.g., Vlastos 1970, 47, n.8). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> he only conclusions we can reasonably draw about Alcmaeon from the passage are that he excised the eyeball of an animal and observed poroi (channels, i.e. the optic nerve) leading from the eye in the direction of the brain (Lloyd 1975). Theophrastus' account of Alcmaeon's theory of sensation implies that he thought that there were such channels leading from each of the senses to the brain: All the senses are connected in some way with the brain. As a result, they are incapacitated when it is disturbed or changes its place, for it then stops the channels, through which the senses operate. (DK, A5) Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> It would be a serious mistake then to say that Alcmaeon discovered dissection or that he was the father of anatomy, since there is no evidence that he used dissection systematically or even that he did more than excise a single eyeball. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> The idea that health depends on a balance of opposed factors in the body is a commonplace in Greek medical writers. Although Alcmaeon is the earliest figure to whom such a conception of health is attributed, it may well be that he is not presenting an original thesis but rather drawing on the earlier medical tradition in Croton. Perhaps what is distinctive to Alcmaeon is the use of the specific political metaphor and terminology (isonomia, monarchia). Just as Anaximander explained the order of the cosmos in terms of justice in the city-state, so Alcmaeon used a political metaphor to explain the order of the human body. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Contrary to a popular Greek view, which regarded the father alone as providing seed, a view that would be followed by Aristotle (Lloyd 1983, 86 ff.), Alcmaeon argued that both parents contribute seed (DK, A13) and that the child takes the sex of the parent who contributes the most seed (DK, A14). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
More significantly, he used analogies with animals and plants in developing his accounts of human physiology. Thus, the pubic hair that develops when human males are about to produce seed for the first time at age fourteen is analogous to the flowering of plants before they produce seed (DK, A15); milk in mammals is analogous to egg white in birds (DK, A16). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Alcmaeon agrees with these Pythagoreans in regarding the opposites as principles of things. Aristotle complains, however, that Alcmaeon did not arrive at a definite set of opposites but spoke haphazardly of white, black, sweet, bitter, good, bad, large and small, and only threw in vague comments about the remaining opposites. It may well be that Alcmaeon's primary discussion of opposites was in relation to his account of the human body (DK, B4; see the discussion of his medical theories above). Aristotle's language supports this suggestion to some extent, when he summarizes Alcmaeon's view as that "the majority of human things (tôn anthrôpinôn) are in pairs" (Metaph. 986a31). Isocrates (DK, A3) says that Alcmaeon, in contrast to Empedocles, who postulated four elements, said that there were only two, and, according to a heterodox view, Alcmaeon posited fire and earth as basic elements (Lebedev 1993). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Long, A. A., (ed.), 1999, The Cambridge Companion to Early Greek Philosophy, Cambridge: Cambridge University Press Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Taylor, C. C. W., (ed.), 1997, Routledge History of Philosophy, Volume 1: From the Beginning to Plato, London: Routledge Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
Re lemma
adipoAdiponectinAdiponectin, a hormone (a.k.a., adipokine, adipocytokine) produced by adipose tissue cells — adipocytes — and secreted into the bloodstream, induces beneficial effects in medical conditions related to obesity, including type 2 diabetes mellitus, atherosclerosis, chronic inflammation, and cancer.[1] [2] [3] [4] Adiponectin alters insulin receptor function, diminishes the action of insulin in the liver, alters the metabolism of free fatty acids by liver cells, and protects against inflammation. Adults and children (humans) who have non-alcoholic fatty liver disease (NAFLD) show decreased plasma concentrations of adiponectin. Inasmuch as insulin resistance in the liver, and hyperinsulinemia, feature in NAFLD, those finding suggest a link between fatty liver and insulin resistance perhaps in part to reduced adiponectin. NAFLD also features elevated levels of leptin, an adipokine that reduces appetite but also interferes with insulin action in the brain.[5] [6] [7] [8] [9] [10] Adiponectin exhibits the following actions:[11] [12] [13] [14] [15] [16] [17] [18]
In patients who have had an acute myocardial infarction, the risk of subsequent major adverse cardiovascular events is lowest in patients with the highest plasma concentrations of adiponectin. [19] Some researchers note that in postmenopausal women serum adiponectin concentrations correlate inversely with bone mineral density.[20] Book review of Language Evolution
A ban in the 1866s by the French Academy of Sciences on publications about the origin of human language must have been one of the strangest bans in the history of sciences. Yet it was highly effective. After the ban, scientists and interested laymen had to wait for more than a century to hold a textbook on language evolution in their hands. Editors Chritiansen and Kirby present, in Language Evolution, a compilation of essays by a diverse group of respected researchers, is amongst the first books that try to tackle what is arguably one of the hardest scientific problems. The editors set themselves the ambitious target of creating an up-to-date book about this emerging field, and they have to be congratulated for their efforts. Linguists, cognitive scientists, behavioural ecologists, and theoretical biologists all offer their view on the origin of human language and, refreshingly, do not shy from pointing out the real or assumed weaknesses of the other approaches. One of the main themes of the book is the evolutionary approach and the importance of biological structures and properties that were co-opted in the development of language (pre-adaptations). In one essay, Michael Studdert-Kenedy and Louis Goldstein propose that speech, as a motor function, draws on phylogenetically ancient mammalian oral capacities for sucking, licking, swallowing, and chewing. Thus, our hominid ancestors adopted an apparatus already divided neuroanatomically into discrete components. Complementing this evidence, Marc Hauser and Tecumseh Fitch compare human speech production and perception with that of nonhuman species. They conclude that many traits that were formerly thought to have evolved specifically for speech (such as having a descended larynx or categorical perception) are also present in other species. But perhaps the most interesting idea about pre-adaptation comes from the work of neuroscientist Michael Arbib on ‘mirror’ neurons in monkeys. These neurons are a subset of the grasp-related premotor neurons that discharge not only, as other premotor neurons do, when the monkey executes a certain class of actions, but also when the monkey observes more or less similarly meaningful hand movements made by the experimenter (or by another monkey). The area in which these grasp-related neurons are found is analogous with the Broca's area in human brains, which is involved in assessing the syntax of words. This observation serves as the basis for the mirror-system hypothesis, which postulates that Broca's area in humans evolved from a basic mechanism not originally related to communication but rather from the mirror system for grasping in the common ancestor of monkey and human. As a result, the mirror system provides a possible ‘neural link’ in the evolution of human language. There is still much debate about the selection pressures that led to the evolution of language. Observing the overabundance of potential selective scenarios for why language evolved, the linguist Derek Bickerton voices his scepticism: ‘The fact that these and similar explanations flourish side by side tells one immediately not enough constraints are being used to limit possible explanations.’ One frequent source of confusion, he notes, is equating language with speech by not distinguishing between modality, lexicon, and structure. Hauser and Fitch share Bickerton's scepticism and urge scientists to rely more on the traditional comparative approach, which was always the strength of Darwinian evolutionary theory. Primatologist Robin Dunbar, who originally proposed that grooming (group bonding) could have provided the stimulus for language, dismisses two other possible scenarios—hunting and tool-making—as potential ecological contexts for the evolution of human language. Gestural origins are also dismissed in his theory, because gestural languages do not seem to develop spontaneously and also require a line-of-sight contact making them useless at night. Interestingly, Steven Pinker rules out both Dunbar's theory of grooming and Geoffrey Miller's theory of sexual selection, whereas Bickerton rules out grooming, gossip, mating contract, and Machiavellian intelligence as likely contexts for the origin of human language. Also under fire in the book is the idea that the human brain is somehow equipped at birth with a ‘universal grammar’ out of which all human languages later develop. Several authors try to provide alternatives to innate predispositions, such as the importance of function to categorization (Michael Tomasello) and the importance of cultural transmission to the structure of language (Simon Kirby and Morton Christiansen). Arbib explicitly questions the traditional Chomskyan theory of innate linguistic predispositions and argues that what humans have and had in the past is ‘language readiness’ rather than a fixed universal grammar. Neuroscientist Terrence Deacon also puts an alternative theory forward. According to Deacon, many of the language universals reflect semiotic constraints inherent in the requirements for producing symbolic reference rather than innate predispositions. Thus, neither evolved innate predispositions nor culturally evolved and transmitted regularities can be considered as the ultimate source of language universals. He draws a parallel with mathematical operations (addition, subtraction, etc.) and with prime numbers. Symbolic reference, he argues, is constrained by the structure it refers to. The editors claim, in the light of this diversity, that ‘this book is intended to bring together, for the first time, all the major perspectives on language evolution’. We have two concerns with this aim. First, two books of the same organization and scope have been published in the past six years based on the material from language evolution conferences (Hurford et al. 1998; Knight et al. 2000). Although this first concern might be just splitting hairs, the second is more substantial: several crucial aspects of language evolution are not represented at all or are just touched superficially. One of these missing themes is the selective advantage of early language. As discussed, many of the contributors express their scepticism towards the selective scenarios found in the literature—and indeed towards such constructions in general—but there is no review and no balanced evaluation of these selective scenarios. Since one of the key questions of language evolution is the selective advantage of early language, the lack of such a review is a major weakness. A balanced account could have been presented even if the editors and most of the contributors are frustrated by the plethora of selective scenarios. Related to the possible selective advantage of language is the issue of genetic background. Although there is mention of the so-called FOX genes—some mutations of which are associated with language disorders—there is no detailed discussion of our current knowledge of genetics related to language. Another lightly treated theme is the neural basis of language and language evolution. Understandably it is one of the most difficult issues concerning human language, and no one expects the editors or any of the contributors to come up with an answer to all the questions. What is missing again is a good survey outlining the problems and the current findings of the field. The weaknesses of the book come from its structure and organization. The editors, instead of outlining a structure and asking specialists to contribute to that structure, appear to have let every contributor write freely about their current ideas and current research without regard to the bigger picture. This definitely shows the interests of the contributors and outlines the current state of the art; it leaves gaps, however, in the coverage of crucial topics related to the evolution of human language. References: Hurford JR, Studdert-Kennedy M, Knight C (1998) Approaches to the evolution of language: Social and cognitive bases. Cambridge: Cambridge University Press. 452 p. Knight C, Studdert-Kennedy M, Hurford JR (2000) The evolutionary emergence of language: Social function and the origins of linguistic form. Cambridge: Cambridge University Press. 438 p. refs
consider for user page
Articles I startedBiographies: Alcmaeon; John Dalton; Vesalius [Andreas Vesalius]; Alfred Russel Wallace; Biology: Life..... epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Test E&BIn the science of biology the concept of energy occupies a central and critical position, inasmuch as living systems could not exist without an ultimate source of energy from the external non-biological world,[2] [3] and could not have emerged from the abiotic world in the first place.[4] Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[5]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
epigraph code
block<blockquote> <p style="margin-left:2.0%; margin-right:6%;font-size:0.95em;"><font face="Comic Sans MS, Trebuchet MS, Consolas"> Text </font> <ref>xx</ref></p> </blockquote>
ps3CO2 + 6H2O +343 kcal light energy → C3H6O3 [triose] + 302 +3H2O
Alcmaeon's extant fragments
J.B. Wilbur lists the English translation of the extant fragments of Alcmaeon's book:[2]
Notes from SEP re Alcmaeonlcmaeon from SEP Book written between 500-450 BC. 1st to identify brain as seat of understanding Distinguished unerstandin rom perception Sense organs connected to brain by hannels Developed argument for soul immortality Physiology: sleep, death, embryonic development Influenced later greek philosopher Aristotle wrote a treatise responding to him, Plato adopted his argument for the immortality of the soul, and both Plato and Philolaus accepted his view that the brain is the seat of intelligence. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Liven in croton, so italy Physician-pilosopher Strong medical tradition developed in crotonj Pythagorean or not? Aristotle wrote a separate book on Alcmaeon The overwhelming majority of scholars since 1950 have accordingly regarded Alcmaeon as a figure independent of the Pythagoreans (e.g., Guthrie 1962 and Lloyd 1991, 167; Zhmud 1997, 70-71, is one of the few exceptions), although, as a fellow citizen of Croton, he will have been familiar with their thought. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> One group of scholars dates the publication of Alcmaeon's book to around 500 (Burkert 1972, 292; Kirk, Raven, Schofield 1983, 339 [early 5th]) so that he would have been born around 540. Another group has him born around 510 so that his book would have been published in 470 or later (Guthrie 1962, 358 [480-440 BC]; Lloyd 1991, 168 [490-430 BC]). In either case Alcmaeon probably wrote before Empedocles, Anaxagoras and Philolaus. He is either the contemporary or the predecessor of Parmenides. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> He thus takes the stance of the scientist who draws inferences from what can be perceived, and he implicitly rejects the claims of those who base their account of the world on the certainty of a divine revelation (e.g., Pythagoras, Parmenides B1). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Socrates connects this view of the brain with an empiricist epistemology, which Aristotle will later adopt (Posterior Analytics 100a3 ff.). This epistemology involves three steps: first, the brain provides the sensations of hearing, sight and smell, then, memory and opinion arise from these, and finally, when memory and opinion achieve fixity, knowledge arises. Some scholars suppose that this entire epistemology is Alcmaeon's (e.g., Barnes 1982, 149 ff.), while others more cautiously note that we only have explicit evidence that Alcmaeon took the first step (e.g., Vlastos 1970, 47, n.8). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> he only conclusions we can reasonably draw about Alcmaeon from the passage are that he excised the eyeball of an animal and observed poroi (channels, i.e. the optic nerve) leading from the eye in the direction of the brain (Lloyd 1975). Theophrastus' account of Alcmaeon's theory of sensation implies that he thought that there were such channels leading from each of the senses to the brain: All the senses are connected in some way with the brain. As a result, they are incapacitated when it is disturbed or changes its place, for it then stops the channels, through which the senses operate. (DK, A5) Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> It would be a serious mistake then to say that Alcmaeon discovered dissection or that he was the father of anatomy, since there is no evidence that he used dissection systematically or even that he did more than excise a single eyeball. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> The idea that health depends on a balance of opposed factors in the body is a commonplace in Greek medical writers. Although Alcmaeon is the earliest figure to whom such a conception of health is attributed, it may well be that he is not presenting an original thesis but rather drawing on the earlier medical tradition in Croton. Perhaps what is distinctive to Alcmaeon is the use of the specific political metaphor and terminology (isonomia, monarchia). Just as Anaximander explained the order of the cosmos in terms of justice in the city-state, so Alcmaeon used a political metaphor to explain the order of the human body. Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Contrary to a popular Greek view, which regarded the father alone as providing seed, a view that would be followed by Aristotle (Lloyd 1983, 86 ff.), Alcmaeon argued that both parents contribute seed (DK, A13) and that the child takes the sex of the parent who contributes the most seed (DK, A14). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
More significantly, he used analogies with animals and plants in developing his accounts of human physiology. Thus, the pubic hair that develops when human males are about to produce seed for the first time at age fourteen is analogous to the flowering of plants before they produce seed (DK, A15); milk in mammals is analogous to egg white in birds (DK, A16). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> Alcmaeon agrees with these Pythagoreans in regarding the opposites as principles of things. Aristotle complains, however, that Alcmaeon did not arrive at a definite set of opposites but spoke haphazardly of white, black, sweet, bitter, good, bad, large and small, and only threw in vague comments about the remaining opposites. It may well be that Alcmaeon's primary discussion of opposites was in relation to his account of the human body (DK, B4; see the discussion of his medical theories above). Aristotle's language supports this suggestion to some extent, when he summarizes Alcmaeon's view as that "the majority of human things (tôn anthrôpinôn) are in pairs" (Metaph. 986a31). Isocrates (DK, A3) says that Alcmaeon, in contrast to Empedocles, who postulated four elements, said that there were only two, and, according to a heterodox view, Alcmaeon posited fire and earth as basic elements (Lebedev 1993). Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Long, A. A., (ed.), 1999, The Cambridge Companion to Early Greek Philosophy, Cambridge: Cambridge University Press Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/> • Taylor, C. C. W., (ed.), 1997, Routledge History of Philosophy, Volume 1: From the Beginning to Plato, London: Routledge Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
Pasted from <http://plato.stanford.edu/archives/win2008/entries/alcmaeon/>
BionetsBiological networks resemble many types of man-made networks, types of systems of diverse structure and function, each a collection of parts, the parts themselves differing in type, with multiple copies of each type, parts capable of interconnecting, the interconnections tying all the parts together into a whole structure made up of subtructures and modules of subtructures, the interconnected parts capable of interacting, the interactions capable of producing particular changes in the structure of each other or in the structures' properties, enabling intercommunication with signals that convey information, the whole structure a functional unit designed for a purpose. Biological networks differ from such man-made networks, however, in having no human designer, having emerged from nature by organic evolutionary processes, its foundational system a biological cell, a biocomputer, designed basically to live and reproduce itelf, autonomous, capable of cooperating with other cells to generate multicellular structures that can intelligently design networks, inorganic as well as organic ones. tbl
<a href="http://www.quackit.com/html/html_table_tutorial.cfm" target="_top">HTML Tables</a>
Refs
|