Biology/Citable Version: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Gareth Leng
m (Text replacement - "public health" to "public health")
 
(231 intermediate revisions by 15 users not shown)
Line 1: Line 1:
[[Image:Example.jpg|thumb|200px|collage image needed: fabulous shot of earth from space, juxtaposed to images of plants, animals, and people]]
{{subpages}}
'''Biology''' is the [[science]] of [[life]]. Biologists study all aspects of living things, including each of the many life forms on Earth as well as the dynamic processes within them that enable life. Those vital processes include the harnessing of [[energy]], the [[synthesis]] of the materials that make up the body, the [[healing]] of [[Injury|injuries]], and the [[Biological reproduction|reproduction]] of the entire [[organism]], among many other activities.
<!--[[Image:Montage2.jpg|thumb|right|300px|[[Biology/Gallery|Biology studies the varieties of Life.]]]]-->
<!--(collage image needed: fabulous shot of earth from space, juxtaposed to images of plants, animals, and people. These should not be "clinical" but visually compelling. Emotional, dynamic- Lion attacking, baby with lopsided smile, best picture of redwood you ever saw, scanning EM, aomeba streaming, the images chosen out of  highest commercial grade portfolio rather than 5th grade textbook). [[Best if images are clickable- click lion-it swats, click baby, it laughs etc. This could be done with animations using photo's, ties in to streaming video - would have to be readable as stills to those without fast computers or broadband connections)(also wouldn't be a bad idea to have video/audio narrative of text)-->
: ''See also [[health sciences]]''


The enigmas of life have fascinated all peoples throughout history, and, accordingly, the roots of biology go back to earliest [[Human|mankind]].  Curiosity about the physical beings of people, plants, and animals still runs deep in every human [[society]]. How is it that these living bodies change; develop, grow, and age? What is it that underlies the divide between inanimate objects and living entities? Some of those questions stem from our desire to control life processes and to exploit natural resources. Pursuit of the answers has led to an understanding of [[organism]]s that has steadily improved our [[standard of living]] through the ages; but questions also come from a desire to understand [[nature]] rather than to control it. The very core of that desire is sparked by a commonly felt need to understand the nature of the world. Biology brings its own answers to these questions and provides a useful way of learning about living things.
'''Biology''' is the [[science]] of [[life]].<ref>'''Etymology''' The word 'Biology' is formed by combining two [[Ancient Greek|Greek]] words ''βίος''  (''bios''), meaning 'life', and ''λόγος'' (''logos''), meaning 'study of'. 'Biology' in its modern use was probably introduced independently by both [[Gottfried Reinhold Treviranus]] (''Biologie oder Philosophie der lebenden Natur'', 1802) and by [[Jean-Baptiste Lamarck]] (''Hydrogéologie'', 1802). Although the word 'biology' is sometimes said to have been coined in 1800 by Karl Friedrich Burdach, it appears in the title of Volume 3 of Michael Christoph Hanov's ''Philosophiae naturalis sive physicae dogmaticae'': ''Geologia, biologia, phytologia generalis et dendrologia'', published in 1766.</ref>  Biologists study all aspects of Earth's living things, including the dynamic processes within them that enable them to develop, survive, and reproduce. Those vital processes include the harnessing of energy and matter, the [[synthesis]] of the materials that make up the body, the healing of [[Injury|injuries]], and the [[Biological reproduction|reproduction]] of the [[organism]], among many other activities.  


Not all natural lore is biology, no matter how accurate or helpful. Although the word 'biology' is sometimes used conversationally to refer to matters that concern flesh and blood, and living creatures, this introductory article is focused on biology as a ''formal science''. Biologists incorporate an understanding of [[mathematics]], [[physics]], [[chemistry]] and other sciences, along with the [[scientific method]], into their study of living things. Still, all human interaction with nature eventually adds to that study; whether ideas came from evidence in the [[laboratory]] or from the [[Breed registry|studbook]] of the breeder, from the notebook of the [[ecologist]] or the field notes of the hunter.
The mysteries of life have fascinated all peoples throughout history, and curiosity about the physical nature and apparent relatedness of people, animals and plants exists in every known society. Some of that curiosity arises from a desire to control life processes and to exploit natural resources. Pursuit of the answers has led to an understanding of [[organism]]s that has steadily improved our [[standard of living]]. Other questions come from a desire to understand nature, rather than to control it; and, in answering these, biological investigation has changed our view of the world.


==The Scope of Biology==
Although the word 'biology' is sometimes used conversationally to refer to matters that concern flesh and blood, and living creatures, this introductory article focuses on biology as a ''formal science''. Unlike non-scientists who are learned in natural lore, biologists formally employ the [[scientific method]], and incorporate  [[Mathematical biology|mathematics]], [[biophysics]], [[biochemistry|chemistry]] and other disciplines into their work.  
How did life begin? What features separate something that ''is'' alive from something that ''is not'' alive? Biologists use science to try and answer these fundamental questions, questions that also concern the philosopher, the rabbi, the iman, or the priest - as well as every person who retains a sense of wonder. Whether scientific thinking about these issues is compatible with religious beliefs is contentious. Some religious leaders have deplored the scientist's mechanistic view of nature that seems to remove the need for active intervention of a Creator. Some notable scientists, such as [[Francis Crick]], who regarded religion narrowly, as mere superstition, welcomed biological explanations as providing a rational basis for the world; free of the need to invoke mysterious powers. Some other great thinkers, however, such as the physicist Albert Einstein, found no conflict between the varying teachings of science and religion, but consider divinity and the natural universe to be one and the same (see [[Albert Einstein]] for detailed discussion with references). In this view, mathematical equations and the language of prophets are simply two different forms of human expression, each attempting to describe a higher dimension than ordinary human experience.


Although science addresses fundamental issues about life, biology is also used to answer practical questions, which are posed to advance medical and dental care, agriculture and animal husbandry. It is through applied biology that the [[health sciences]] became such effective [[healing arts]] and that the world's food supply has become safer and more plentiful.


Many independent [[List of biology disciplines|scientific fields]] make up biology, but all are related. [[Natural history]] (the study of individual species like [[white-tailed deer]], [[sugar maple]] trees, [[box jellyfish]] and timber [[wolves]]) was one of the first areas to develop. In natural history, whole organisms are studied in an attempt to make sense of the order of nature. When the natural histories of plants and animals are considered in a context of how each affects the other and their environment, then the biologist's focus is on [[ecology]]. Some fields of biology focus on the natural history of living organisms and their interactions within a certain realm of the earth, as in [[marine biology]]; others focus on particular aspects of the bodies of living organisms, like their structure ([[anatomy]]) or function ([[physiology]]). Studies of animals form the field of [[zoology]], whereas the study of plants is called [[botany]]. [[Medicine]] and the [[health sciences]] apply biology to understanding disease and to improving health. [[Image:Example.jpg]]
__TOC__


==The development of biology==
==The scope of biology==
{{main|History of biology}}
How did life on earth begin? What features separate something that is alive from something that is dead or inanimate? How have living things, ranging from microscopic bacteria to towering trees, changed the earth's oceans, atmosphere and geology over time? Biologists use science to approach such fundamental questions, questions that also concern the philosopher, the rabbi, the imam<!--Spelling of the Shorter Oxford dict.-->, or the priest - as well as every person who retains a sense of wonder. The scientific theories constructed as answers rarely agree with spiritual doctrines. Some religious leaders have deplored the scientist's mechanistic approach, because it removes the requirement for active intervention by a Creator. Some scientists, such as [[Francis Crick]], have welcomed biological explanations as providing a rational basis for the world, free of the need to invoke supernatural powers.<ref>The evolutionary biologist [[Richard Dawkins]] (2006)  sets out the secular [[humanist]] case in ''The God Delusion'' ISBN 9780058259</ref> Others<ref>Intuitive concepts, such as, to use Richard Dawkins term, "Einsteinian religion" and the common intuition that animals have a "living essence", and humans a "soul", are not part of the direct scientific conception of modern biology, but surprisingly, being arguably part of innate human behavior, they ''are'' part of the vigorous modern field of evolutionary psychology. See for instance, Steven Pinker (2002) ''The Blank Slate'' ISBN 014027605X, and Dawkins (2006) for extensive discussions.</ref> identify spiritual harmonies between the deeper insights provided by science and religious thought. In this view, mathematical equations and the language of prophets are simply two different forms of human expression, each attempting to describe a higher dimension than ordinary human experience. 
The rest of this article explores selected themes in biology while giving a short overview of the development of the science. Those themes center on the origin of life (both 'life on earth' ''and'' the creation of a new infant) and are followed through the centuries from ancient Greece to the present day. It is apparent that a philosophy of ''critical thinking'', the use of investigative methods that rely on ''empirical evidence'', and the availability of ''technological tools'' have, in combination, accounted for how these ideas have changed. The development of biology has drawn on many more topics, and a much larger geographical area than referred to here, but, as outlined below, the science of biology has had a continuous thread through the centuries that began with the ancient Greek philosophers, advanced in Europe during the Enlightenment, and matured during the Nineteenth and Twentienth Centuries with widespread investigations performed according to the scientific method.  
[[Image:Typhoid1902.jpg|left|thumb|300px|Biology based advances in the [[Health Sciences|health sciences]] have helped prevent many deadly infectious diseases such as [[typhoid]] in developed countries.]]
Although biology addresses fundamental issues about living things, it also addresses practical questions. The applications of biology have enabled the [[Health science|health sciences]] to become effective [[healing arts]], and the world's food supply to become safer and more plentiful.


Many independent [[List of biology disciplines|scientific fields]] make up biology. [[Natural history]] (the study of individual species like [[white-tailed deer]], [[sugar maple]] trees, [[box jellyfish]] and timber [[wolves]]) was one of the first areas to develop; in natural history, whole organisms are studied in an attempt to make sense of the order of nature. When plants and animals are considered in a context of how each affects the other and their environment, then the biologist's focus is on [[ecology]]. Some fields of biology focus on living organisms and their interactions within a certain realm of the earth, as in [[marine biology]]; others focus on particular aspects of living organisms, like their structure ([[morphology]] and [[anatomy]]) or function ([[physiology]]). Studies of animals form the field of [[zoology]], whereas the study of plants is called [[botany]]. [[Medicine]] and the [[Health Sciences|health sciences]] apply biology to understanding disease and to improving health.


===Biology in the Ancient World===
==The development of biology==
Whether foragers or farmers, hunters or herders, people have always relied on plants and animals for sustenance, and turned their thoughts to food. [[Paleolithic]] [[cave paintings]] show that careful observations of prey have been expressed for at least tens of millennia. Human interest in food is not limited to passive considerations. Rather than take sustenance simply as found, we generally carry food items from place to place, and process them in various ways. At some point, probably somewhere in the fertile [[Nile delta]], interactions with certain plants, and their seeds, began to be ''planned'', and, in [[neolithic]] times, agriculture became established in many societies. When intellectual consideration of what plants ''are'' was combined with evidence-based experiments used to understand their growth, then [[botany]], the science of plants, joined agriculture as a human endeavor.<ref>see [[Jared Diamond]] 'Guns, Germs, and Steel' (1997) ISBN 0-393-31755-2</ref>
: ''For more information see Citizendium's article on [[History of biology]]''
This article explores just a few selected themes; those themes center on the origin of life (both 'life on earth' ''and'' the creation of a new infant) and are followed through the centuries from ancient Greece to the present day. It is apparent that a philosophy of ''critical thinking'', investigative methods that rely on ''empirical evidence'', and the availability of ''technological tools'' have, together, accounted for how these ideas have changed. The development of biology has drawn on many more topics, and a much larger geographical area than referred to here. But the science of biology has a continuous thread through the centuries that began with the ancient Greek philosophers, and has generally followed the winding pattern of advancement presented here.
===Biology in the ancient world===
People rely on plants and animals for sustenance, and [[Paleolithic]] [[cave paintings]] show that meticulously careful observations of prey have been expressed for at least tens of millennia. Human interest in food was not limited to passive considerations since, rather than eaten as found, it was carried from place to place and processed in various ways. In [[Neolithic]] times, probably somewhere in the fertile [[Nile delta]], more 'planned' interactions with certain plants and their seeds led to the establishment of [[agriculture]] in many societies. When the intellectual consideration of what plants ''are'' was combined with experiments to understand their growth, then [[botany]], the science of plants began.<ref>[[Jared Diamond]] (1997)  ''Guns, Germs, and Steel'ISBN 0393317552</ref>


The beginnings of Anatomy and Zoology both date back at least to the Fourth Century BC, and the ancient Greek philosopher [[Aristotle]]. In the first known book that discusses how life in the womb begins, Aristotle suggested that the woman provides the substance needed to build a new baby while the man provides the essence that gives this substance its humanity; he thought that menstrual blood and semen were the female and male contributions to a new life. Aristotle used logic and observation to arrive at his theory, which, in the main, was still accepted 2000 years later. His conclusion that the woman's portion was the mere soil for the man's seed, and that the man's donation supplied all the essential humanity, was probably influenced by the assumption, in his society, that women were less highly developed than men. It might also have come from examining the seeds of some trees, where the entire immature plant is contained within the husk, and springs into independent life as a young tree once planted. A popular idea that grew out of Aristotle's musings was that sperm contained a perfect miniature version of the new baby - a ''[[homunculus]]''.
Anatomy and zoology both date back to at least the 4th century BCE, and the ancient Greek philosopher [[Aristotle]].<ref>[http://plato.stanford.edu/entries/aristotle-biology/ Aristotle's Biology] in ''The Stanford Encyclopedia of Philosophy'' for a summary of Aristotle's biology and references to works by scholars interpreting his biological ideas. </ref> In the first known book that discusses how life in the womb begins, Aristotle suggested that the mother provides the substance needed to create a new life, but that the father provides this base material with the essence of the child.  He thought that the female's actual physical contribution to the baby was her menstrual blood, and that the male's corresponding contribution was his semen. Aristotle used logic and observation to arrive at his theory, which, in the main, was still accepted 2000 years later. His conclusion that the woman's portion was the mere soil for the man's seed, and that the man's donation supplied all the essential humanity, was probably influenced by the assumption (in his society) that women were less highly developed than men. A popular idea that grew out of Aristotle's musings was that sperm contained a perfect miniature version of the new baby - a ''[[homunculus]]''.


The writings of the Greek scholars were preserved and cherished by the Romans, who added literature on the structure and function of animal and human bodies. The most influential of these was [[Galen]], who was one of the most noted physicians in Rome. Galen performed public [[dissection]] and [[vivisection]] of animals and used his findings to try to explain human illness. His writings survived the fall of Rome, and they formed a basis for the continuing advance of medicine.
The writings of the Greek scholars were preserved and cherished by the Romans, who added literature on the structure and function of animal and human bodies. The most influential of these was [[Galen]], who was one of the most noted physicians in Rome. Galen performed public [[dissection]]s and [[vivisection]]s of animals, and used his findings to try to explain human illness. His writings survived the fall of Rome, and they formed a basis for the continuing advance of medicine.


===Medieval Europe and the Arab World===
===Medieval Europe and the Arab world===
With the Fall of Rome, many of the great Greek and Roman works were lost in Europe. Only a few survived, and few people could read them - both the literature and the readers often cloistered together in religious orders.  
With the Fall of Rome, many of the great Greek and Roman works were lost in Europe. Only a few survived, and few people could read them - both the literature and the readers often cloistered together in religious orders.  
The [[University of Padua]] was one of the rare places in Europe where organized learning continued, and later, [[Padua, Italy|Padua]] was to become one of the seats of the Enlightenment. Arab writers, in contrast, continued the work that had been established in the Roman empire. Copies of the old manuscripts were made, and new books of empirically derived medical procedures and theory were written. Later, when the [[Moors]] invaded Europe, these books became available to scholars there.
The [[University of Padua]] was one of the rare places in Europe where organized learning continued, and later, [[Padua, Italy|Padua]] was to become one of the seats of the [[Enlightenment]]. Arab writers, in contrast, continued the work that had been established in the Roman empire. Copies of the old manuscripts were made, and new books of empirically derived medical procedures and theory were written. Later, when the [[Moors]] invaded Europe, these books became available to scholars there.


===Early Modern Biology : The European Renaissance and the 'Scientific Method'===
===The European Renaissance and the 'scientific method'===
When the authority of the 'classical' authors (such as Aristotle and Galen) and of religious doctrine (such as the teachings of the medieval Catholic Church) on the nature of living things began to be questioned in light of actual observation and experiment, the [[scientific method]] became established. In the early 16th century, scholars had returned to reading Galen in the original Greek, and they emphasized his superiority over his later interpreters, stressing his learning and the importance of anatomy in his view of medicine. The Dutch physician [[Vesalius]] (1514-1564), although contemptuous of Galen, followed his methods to produce a new anatomy of the human body, ''[[De humani corporis fabrica]]'' (''On the Workings of the Human Body''). He is often called the founder of modern human anatomy.
: ''See also [[History of scientific method]]
<ref>Nutton V (2002) Portraits of science. Logic, learning, and experimental medicine ''Science'' 295:800-1 PMID 11823624 </ref>  
During the Renaissance, the authority of the 'classical' authors (such as Aristotle and Galen), and of religious doctrine (such as the teachings of the medieval Catholic Church), on the nature of living things began to be questioned in light of actual observation and experiment (the '[[scientific method]]'). In the early 16th century, scholars had returned to reading Galen in the original Greek, and they emphasized his superiority over his later interpreters, stressing the importance of anatomy in his view of medicine. The Dutch physician [[Vesalius]] (1514-1564), although contemptuous of Galen, followed his methods to produce a new anatomy of the human body, ''[[De humani corporis fabrica]]'' (''On the Workings of the Human Body''). He is often called the founder of modern human anatomy.<ref>Nutton V (2002) Portraits of science. Logic, learning, and experimental medicine ''Science'' '''295''':800-1 PMID 11823624 </ref>  


By the Sixteenth and Seventeenth Century, the advantages of firm empirical evidence instead of the opinions of authorities were advocated by such influential writers as [[Girolamo Fabrici]] of Italy and [[Francis Bacon]] of England (who coined the phrase ''[[knowledge is power]]''). Rather than memorize the texts of [[Galen]], or perform ritual sorts of dissections as homage to Galen's findings, the anatomy and physiology of animals began to be carefully explored in completely new directions. The early European biologists followed structures like nerves and veins that travelled between organs and analyzed their findings in an attempt to find general principles of the organization and function of the body. Theories in biology were still very preliminary, but the evidence for ideas that explained an order to living things revolutionized thinking in biology.  
By the 17th century, the advantages of firm empirical evidence over the opinions of authorities were seen by such influential writers as [[Girolamo Fabrici]] of Italy and [[Francis Bacon]] of England (who coined the phrase ''[[knowledge is power]]''). Rather than memorize the texts of Galen, or perform ritualized dissections as 'homage' to Galen's findings, the anatomy and physiology of animals began to be carefully explored in completely new directions. The early European biologists mapped the paths taken by the nerves and veins that traveled between organs, and analyzed their findings in an attempt to find general principles of the organization and function of the body. Theories in biology were still very preliminary, but the evidence for ideas that explained an order to living things revolutionized thinking in biology.  


The Englishman [[William Harvey]] studied how embryos develop by observations of hens' eggs and by dissecting pregnant deer and other mammals. He speculated that development proceeded from one to another of the fetal forms he found, imagining that each of these forms was a stage in a continuous process. Although other of his experiments famously revealed the circulation of the blood, and identified the workings of the heart as pump, when it came to early development he failed to construct any sort of rational explanation. He could not understand how discrete organs in the developing fetus could form out of the amorphous materials in the just pregnant womb or newly fertile egg. He chose a spiritual rather than a mechanistic explanation, postulating that the soul of the new individual was derived from the placement of sperm in the female tract, invoking the gist of the old Aristotlean argument. Still, he modified Aristotle's explanation by insisting that the male and female contributions were equally important. He refuted the notion that the fetus is made up by the specific materials contributed by the male, that grow because of the separate materials contributed by the female. Instead, he argued that "the material out of which the chick is formed in the egg is made at the same time it is formed" and that "out of the same material from which it is made, it is also nourished"<ref>(Van Speybroeck L, De Waele D, Van de Vijver G (2002) Theories in early embryology: close connections between epigenesis, preformationism, and self-organization. ''Annals of the New York Academy of Sciences'' 981:7-49 PMID 12547672).</ref>
The Englishman [[William Harvey]] studied how embryos develop by observations of hens' eggs and by dissecting pregnant deer and other mammals. He speculated that development proceeded from one to another of the fetal forms he found, imagining that each of these forms was a stage in a continuous process. Although other of his experiments famously revealed the circulation of the blood, and identified the workings of the heart as a pump, when it came to early development he failed to see any sort of rational explanation. He could not understand how discrete organs in the developing fetus could form out of the amorphous materials in the just pregnant womb or newly fertile egg. He chose a spiritual explanation, postulating that the soul of the new individual was derived from the placement of sperm in the female tract, invoking the gist of the old Aristotelian argument. Still, he modified Aristotle's explanation by insisting that the male and female contributions were equally important. He refuted the notion that the fetus is made up by the specific materials contributed by the male that grow because of the separate materials contributed by the female. Instead, he argued that "the material out of which the chick is formed in the egg is made at the same time it is formed" and that "out of the same material from which it is made, it is also nourished".<ref>Van Speybroeck L ''et al.'' (2002) Theories in early embryology: close connections between epigenesis, preformationism, and self-organization ''Ann NY Acad Sci'' '''981''':7-49 PMID 12547672</ref>


===The Eighteenth and Nineteenth Centuries: seeing the links between lifeforms===
===The 18th and 19th centuries: seeing the links between life forms===
As detailed examination of plant and animal species became common, and the knowledge was shared among people in many different parts of the world, similar structures were recognized in many different species. In the Eighteenth Century, the Swedish naturalist [[Carolus Linnaeus]] proposed a way of systematically classifying all living things. His method gives a unique name to each kind of plant and animal, and organizes them in a way that stresses similarities of physical features - based on their [[comparative anatomy]]. This naming system is still used today, and each known species has one unique name that biologists all over the world recognize. The name has two parts: ''[[genus]]'' and ''[[species]]'', the two most refined categories in the classification scheme. The language of these names is Latin, which was the common written language of scholars in Europe in Linnaeus' time.
As detailed examination of plant and animal species became common, and the knowledge was shared among people in many different parts of the world, similar arrangements of body structure were recognized in many different species. In the 18th century, the Swedish naturalist [[Carolus Linnaeus]] proposed a way of systematically classifying all living things. His method gives a unique name to each kind of plant and animal, and organizes them in a way that stresses similarities of physical features - based on their [[comparative anatomy]]. This naming system is still used today, and each known species has a unique name that biologists all over the world recognize. The name has two parts: ''[[genus]]'' and ''[[species]]'', the two most refined categories in the classification scheme. The language is [[Latin]], which was the common written language of scholars in Europe in Linnaeus' time. [[Human]] beings, for example, belong to the species ''Homo sapiens'' (Latin for 'wise man') under the family ''hominidae'' (the great apes).<ref>For a more modern view on differing methods of classifying living things, see Marc Ereshefsky (2001) [http://assets.cambridge.org/052178/1701/frontmatter/0521781701_FRONTMATTER.pdf ''The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy'']  ISBN 054781701 Reviewed in [http://www.nature.com/nature/journal/v415/n6874/full/415839a.html/| Nature] and in [http://www.sciencemag.org/cgi/content/summary/297/5587/1650a| Science]</ref>


Although this systematic classification of living things became widely accepted, at first it did not include the idea that all living things were somehow ''related''. For more than a hundred years after, even highly educated thinkers assumed that complicated life forms (even mice!) could spring to life from a setting of inaminate objects (such as old rags and bread crumbs left in a dark corner). In the Nineteenth Century, [[Louis Pasteur]] of France showed that this common notion, [[spontaneous generation]], was a fallacy. His life's work in [[bacteriology]], along with the later work of the German physician [[Robert Koch]], was important in establishing the [[germ theory of disease]]. That work helped bring the traditional practice of Medicine into the [[health sciences]] and establish a scientific basis for the field of [[public health]].
Although this systematic classification of living things became widely accepted, at first it did not include the idea that all living things were ''related''. For more than a hundred years afterward, most highly educated thinkers assumed that complicated life forms (even mice!) could [[abiogenesis|spring to life]] from a setting of inanimate objects (such as old rags and bread crumbs left in a dark corner). In the 19th century, [[Louis Pasteur]] of France showed that this common notion, [[spontaneous generation]], was a fallacy. His life's work in [[bacteriology]], along with the later work of the German physician [[Robert Koch]], was important in establishing the [[germ theory of disease]]. That work helped bring the traditional practice of medicine into the [[health sciences]] and establish a scientific basis for the field of public health.
[[Image:Young zebra finch.jpg|frame|The varying types of island bird's beaks caught Darwin's attention. Was it just co-incidence that the shape so perfectly managed each bird's particular food?]]  
[[Image:Young zebra finch.jpg|thumb|300px|A [[zebra finch]].]]  
In England, [[Charles Darwin]] built on the idea of [[natural selection]] as a way to explain how different life forms might have common patterns of form. His observations of the variations of animal life on remote islands made him realise that individual creatures might thrive, or die, according to how well their characteristics 'fitted' their immediate habitat. He realised that individual members of any species were different from each other in ways that made some more successful than others in producing offspring, and that, if these differences were passed on to the offspring, then the features that made some individuals successful would become more common in each generation. From this insight, he made the bold leap in understanding to realise that perhaps, in enough time, entirely new species might arise. His theories became incorporated into the theory of [[evolution]] which suggests that all present living things descended from past living things. The existence of common ancestors would account for similar body forms among descendents, and provided a plausible basis for the wide-spread existence of patterns of very similar features among groups of plants and animals: the very patterns that Linnaeus had used to formulate his categories in classification. This idea was not entirely new, but previous proponents had found it hard to understand how such incredibly diverse life forms might come about in the few thousand years that the world was thought to have existed. By Darwin's time, advances in [[Earth Science]] had found evidence that the earth was millions of years older than had been previously suspected. Acceptance of this magnitude of time scale made the idea of incremental change over generations a more reasonable possibilty. Evolutionary change from ancient life was accepted by biologists as a theory that explained both the diversity of life forms and the existence of patterns of common features.
In England, [[Charles Darwin]] built on the idea of [[natural selection]] as a way to explain how diverse creatures might have common patterns of form. His observations of the variations of animal life on remote islands made him realize that individual birds, mammals and reptiles might thrive, or die, according to how well their characteristics 'fitted' their immediate habitat. He realized that individual members of any species were also different from each other in ways that made some more successful than others in producing offspring. If these kinds of differences were passed on to the offspring, then the features that made some individuals successful would become more common in each generation. From this insight, he made the bold leap in understanding to realize that perhaps, in enough time, entirely new species might arise. His theories became incorporated into the theory of [[evolution]] which suggests that all present living things descended from past living things. The existence of common ancestors would account for similar body forms among descendants, and provided a plausible basis for the wide-spread existence of patterns of very similar features among groups of plants and animals: the very patterns that Linnaeus had used to formulate his categories in classification. This idea was not entirely new, but previous proponents had found it hard to understand how such incredibly diverse life forms might come about in the few thousand years that the world was thought to have existed. By Darwin's time, advances in [[Earth Science]] had found evidence that the earth was [[Age of the Earth|millions of years older]] than had been previously suspected, and this made the idea that organisms had evolved by many small, incremental changes over thousands of generations much more plausible. Evolutionary change from ancient life was accepted by biologists as a theory that explained both the diversity of life forms and the existence of [[phylogenetics|patterns of common features]].


In the second half of the Nineteenth Century, an Austrian monk, [[Gregor Mendel]], analysed how traits were inherited from generation to generation, and he concluded that the male and the female parent contribute equally. (This egalatarian view was perhaps helped by the fact that Mendel studied garden peas, not men and women). Instead of a fuzzy 'blending' of the characteristics of parents, Mendel saw that discrete traits of each individual were inherited intact, apparently based on a sort of 'binary system' of alleles that coded for the quality of each of them. A pea might be wrinkled or smooth, for example, and the particular pair of alleles inherited by the young sprout determined what the next generation of peas would be like. Mendelian also saw that these [[alleles]] might be either 'dominant' or 'recessive'. Together, these ideas allowed Mendel to predict the number of offspring that would have each characteristic, and the field of [[genetics]] began.
In the late 19th century, an Austrian monk, [[Gregor Mendel]], analyzed how traits were inherited from generation to generation in garden peas, and he concluded that the male and the female parent contribute equally. Instead of a fuzzy 'blending' of the characteristics of parents, Mendel saw that discrete traits of each individual were inherited intact, apparently based on a particulate 'binary system' of alleles that coded for the quality of each of them. A pea might be wrinkled or smooth, for example, and the particular pair of [[allele]]s inherited by each pea then determined what the next generation would be like. Mendel also saw that these alleles might be either '[[dominant gene|dominant]]' or '[[recessive gene|recessive]]'. Together, these ideas allowed Mendel to predict the number of offspring that would have each characteristic, and the field of [[genetics]] began.


==Technology advances Biology==
==Technological advances in biology==
=== First Glimpses of the Microscopic World===
=== First glimpses of the microscopic world===
[[Image:Homunculus.jpg|frame|This is a big one. Let me know if you need it smaller]]
[[Image:Homunculus.jpg|frame|When sperm were first seen under the microscope, it was thought that each contained a perfect miniature human being]]
The advance of biological thinking depended on the communication of these ideas, and also on technology. Even the communication of ideas in science has depended on technology; in a sense, the printing press was an invention that facilitated the Enlightenment, and today, electronic communication has accelerated the rate of research. The availability of technical tools for experimentation has in a large part determined the course of progress.  
The advance of biological thinking depended on the communication of these ideas, and also on technology. Even the communication of ideas in science has depended on technology; in a sense, the printing press was an invention that facilitated the Enlightenment, and today, electronic communication has accelerated the rate of research. The availability of technical tools for experimentation has in a large part determined the course of progress.  
[[Image:Human Sperm.jpg|left|thumb|250px|Magnified human sperm cells, approx. 125x in thumbnail image]]
The features of plants and animals, for example, have been understood on an entirely different level with technological advances that provided new ways to study them. The microscope, modified by [[Antonie van Leeuwenhoek]] in the 17th century, revealed details of structure in the bodies of organisms that had never before been suspected. That amorphous material that Harvey could not fathom as the progenitor of organs might have seemed to him to be of a wholly different nature had he the advantage of magnification. One of the new sights that van Leeuwenhoek described was individual ova and spermatozoa. Being familiar with the theories of Aristotle and their popular interpretation, he reported that he could actually ''see'' homunculi in the heads of the living sperm - an example of even a great scientist perceiving his expectations, rather than what was really there. Science is always influenced by past ideas. No scientist can consider any hypothesis, or analyze any set of experimental results without using his or her mind, and all the blinkers and biases that come with it - however hard the good scientist tries to shake free and be rational and objective, that mind is both consciously and unconsciously stamped with the culture that produced it.


The features of plants and animals, for example, have been understood on an entirely different levels with technological advances that provided new ways to study them. The microscope, modified by [[Antoni van Leeuwenhoek]] in the Seventeenth Century, revealed details of structure in the bodies of organisms that had never before been even suspected. That amorphous material that Harvey could not fathom as the progenitor of organs might have seemed to him to be of a wholly different nature had he the advantage of magnification. One of the new sights that van Leeuwenhoek described were individual ovum and spermatozoa. Being familiar with the theories of Aristotle, and their popular interpretation, he reported that he could actually ''see'' homunculi in the heads of the living sperm - an example of even a great scientist perceiving his expectations, rather than what was really there. Science is ''always'' influenced by past ideas. No scientist can consider any hypothesis, or analyze any set of experiemental results without using his or her mind, and all the blinkers and biases that come with it - however hard the good scientist tries to shake free and be rational and objective, that mind is both consciously and unconsciously stamped with the culture that produced it.  
Not only was the structure of flesh and plants seen in new detail with the microscope, but new ''types'' of organisms were also revealed: micro-organisms that could not be detected with the naked eye.<ref>Anton(ie) van Leeuwenhoek. ''Encyclopedia of World Biography'' 2nd ed. 17 Vols. Gale Research, 1998.  [http://galenet.galegroup.com.ezproxy.med.nyu.edu/servlet/BioRC Reproduced in Biography Resource Center]. Farmington Hills, Mich.: Thomson Gale. 2006</ref> And so, like all important technological advances in biology, the microscope led to new ideas about living things. It was realized that tissues were composed of cells, the field of [[microbiology]] was born, and the ground was prepared for the germ theory of disease, an idea that helped bring the traditional practice of western [[medicine]] into the field of [[health science]] and modern medicine. Further developments led to the modern compound microscope by the end of the 19th century, with a much higher resolution allowing the visualization of dividing cells, and the [[chromosomes]] of the [[nucleus]].


Not only was the structure of flesh and plants seen in new detail with the microscope, but new ''types'' of organisms were also revealed: micro-organisms that could not be detected with the naked eye. <ref>Anton van Leeuwenhoek. ''Encyclopedia of World Biography'', 2nd ed. 17 Vols. Gale Research, 1998.  [http://galenet.galegroup.com.ezproxy.med.nyu.edu/servlet/BioRC Reproduced in Biography Resource Center]. Farmington Hills, Mich.: Thomson Gale. 2006</ref> And so, like all important technological advances in biology, the microsocope led to new ideas about living things. It was realised that tissues were composed of cells, the field of microbiology was born, and the ground was prepared for the germ theory of disease, an idea that helped bring the traditional practice of western [[medicine]] (sometimes called [[allopathy]]) into the field of [[health science]] and modern medicine.
===Cell biology begins===
[[Cell biology]] began around 1900, with the discovery of the [[chromosomes]] and the understanding of [[mitosis]] and [[meiosis]]. Application of Mendel's fundamental laws of heredity to [[genetic linkage]] analysis allowed the correlation of specific plant or animal traits to be ordered as [[locus (genetics)|gene loci]] in the first genetic maps.<ref>Sturtevant, A. H. (1913) [http://www.esp.org/foundations/genetics/classical/ahs-13.pdf  The linear arrangement of six sex-linked factors in Drosophila]</ref> The culmination of this work and evidence from [[cytogenetics]], led to the concept of genes as heritable traits that had a physical structure in the chromosomes; in the words of [[Thomas Hunt Morgan|Thomas Morgan]] "...there is an ever increasing body of information that points clearly to the chromosomes as the bearers of the Mendelian factors, it would be folly to close one's eyes to so patent a relation."<ref>Morgan TH  Sturtevant AH Muller MJ and Bridges CB (1915) [http://www.esp.org/books/morgan/mechanism/facsimile The Mechanism of Mendelian Heredity] Henry Holt and Company </ref>


Further developments led to the modern compound microscope by the end of the 19th century, with much higher resolution. [[Cytology]] included studies of dividing cells, and the [[chromosomes]] of the [[nucleus]] became recognized as containing the genetic material that lay behind Mendel's laws of inheritance of traits.
Towards the mid-20th century, with the development of the [[electron microscope]], ultra-high power examination of cells was possible and the field of cell biology began to unravel the inner structure of cells, discovering discrete organelles that could only be seen well at such high magnification. Closer examination of the structure of the cell was combined with the ability to physically separate out the components of the cells in bulk by density and chemical properties and analyze each fraction using methods from [[biochemistry]] and [[biophysics]]. The important techniques that allowed this analysis include [[ultracentrifugation]] and [[gel electrophoresis]]. Advances in this new field of cell biology confirmed that living things were composed of cell units and extended the understanding of just how cells carried out life processes.
Eventually, in the 20th century, [[electron microscopes]] were built that could reveal the structure of cells at a magnification of tens of thousands of times. Science differs from religious and political doctrine in at least one major manner – tenets are not to be held sacred forever, but are always there to be questioned and tested. This has proved damaging for many of them, including the homunculus theory of fetal development. With improved optics and the new imaging techniques of scanning and transmission electron microscopes, that "little man" inside the sperm cell vanished forever.


[[Image:Human Sperm.jpg|right|frame|magnified human sperm cells]]
Science differs from religious and political dogmas in at least one major manner – its tenets are not 'sacred', but are always there to be questioned and tested. Thus over time, ideas have changed and many theories have been abandoned or disproved, including the homunculus theory of fetal development. With the resolving power of the electron microscopes, able to image cell structure at a magnification of tens of thousand-fold, that 'little man' inside the sperm cell vanished forever.
 
===[[Cell Biology]] begins===
Cell biology  began around 1900, with the discovery of the chromosomes and the understanding of [[mitosis]] and [[meiosis]]. Fifty years later, the field was revolutionized by the development od the electron microscope, with its ultra-high power examination of cells. ''Another'' new discipline within biology began to flourish; the field of [[cell biology]] began to unravel the inner architecture of cells, discovering discrete organelles that could only be seen well at high magnification. Closer examination of the structure of the cell was combined with the ability to physically separate out the components of the cells in bulk by weight and chemical properties and analyze each fraction using methods from [[biochemistry]] and [[biophysics]]. The important techniques that allowed this analysis include [[ultracentrifugation]] and [[gel electrophoresis]].


==Molecular biology, and a revolution in understanding==
==Molecular biology, and a revolution in understanding==
In the Twentieth Century, the properties and roles of some of the [[macromolecule]]s found in living things were examined. [[Proteins]] were found to have complex three-dimensional structures that were important for making up physical structures, and some, known as [[enzyme]]s, included specialized sites able to catalyze the chemical reactions critical for [[metabolism]]. Over the decades, proteins were found to take on a variety of roles from being building blocks for cells and tissues, to receptors for signaling, critical for transport in and out of cells, and to guide immune cells to recognize and attack foreign germs. Strikingly, it was found that the molecular structures were conserved, even between [[Kingdom (biology)|kingdoms]], in the various families of proteins, thus confirming the ideas of previous centuries that had noted the similar patterns between the organ structures of different plants and animals.  
In the 20th century, the properties and roles of some of the large organic molecules ([[Macromolecule|macromolecule]]s) found in living things were examined. [[Proteins]], which are one type of macromolecule,  have three-dimensional shapes that give them special properties. Some proteins, known as [[enzyme]]s, have specialized sites able to catalyze the chemical reactions critical for [[metabolism]]. Other proteins act as building blocks that make up the filaments that support the [[cytoplasm]] of cells, or lend such qualities as waterproofing to skin ([[keratin]]) or tensile strength to tendons ([[collagen]]). Proteins also provide an elaborately configured signaling network that guides responses to the environment. These sophisticated activities range from the selective transport of ions and food in and out of cells, to the ability of immune cells to recognize and attack only foreign germs, rather than rain ''friendly fire'' on other parts of the body. Strikingly, as protein sequences were compared between species, biologists appreciated a new variation on the old theme that research in comparative anatomy had raised three hundred years before. First, recurring anatomical patterns had been recognized in different animals, like the arrangement of bones in a bat's wing, a seal's flipper and a man's arm; and later, the molecular structures and shapes of the various families of proteins were recognized to be similarly repeating. The amino acid sequences within the protein families even show similarities between [[Kingdom (biology)|kingdoms]] like bacteria and animals, confirming that all living things are related.
[[Image:DNA.gif|frame|The 'double helix' of DNA. Watson and Crick, when first describing this, declared “It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.” [http://pilot.citizendium.org/images/8/81/ADN_animation.gif DNA animated]]]
[[Image:DNA.gif|frame|The 'double helix' of DNA. Watson and Crick declared “It has not escaped our notice that the specific pairing ... suggests a possible copying mechanism for the genetic material.” [http://pilot.citizendium.org/images/8/81/ADN_animation.gif DNA animated]]]
By 1953, the meticulous x-ray studies of [[Rosalind Franklin]] allowed the imagination of [[James Watson]] and [[Francis Crick]] to seize upon the structure of [[DNA]].<ref>[[James D. Watson]] and [[Francis Crick]] (1953) The [[Molecular structure of Nucleic Acids]]: a structure for deoxyribose nucleic acid ''[[Nature (journal)|Nature]]'' 171:737-738. The National Library of Medicine's [http://profiles.nlm.nih.gov/SC/B/B/Y/W/_/scbbyw.pdf PDF copy] in the [http://profiles.nlm.nih.gov/SC/ Francis Crick Documents Collection].</ref> The [[double helix]] structure of that molecule, published in 1953, revealed how information might be coded through the generations, by showing how the DNA molecule could act as a 'template' for the synthesis of both itself, and a related molecule, [[RNA]]. Crick and others went on to propose that small RNA molecules might serve as adaptors that could be made from such a template, and be used to assemble amino acids to build [[proteins]].
By 1953, the painstaking x-ray studies of [[Rosalind Franklin]] allowed the imagination of [[James Watson]] and [[Francis Crick]] to seize upon the structure of [[DNA]].<ref>Watson JD Crick F (1953) The Molecular structure of Nucleic Acids: a structure for deoxyribose nucleic acid ''[[Nature (journal)|Nature]]'' '''171''':737-738. The National Library of Medicine's [http://profiles.nlm.nih.gov/SC/B/B/Y/W/_/scbbyw.pdf PDF copy] in the [http://profiles.nlm.nih.gov/SC/ Francis Crick Documents Collection].</ref> The [[double helix]] structure of that molecule revealed how information might be coded and passed from generation to generation, by showing how the DNA molecule could act as a 'template' for the synthesis of both itself, and a related molecule, [[RNA]]. Crick and others went on to propose that small RNA molecules might serve as adaptors that could be made from such a template, and be used to assemble amino acids to build [[proteins]].


With these advances in organic chemistry, biochemistry and molecular biology, a new view of the origin of life forms on earth emerged. "It is now widely believed that almost four billion years ago, before the first living cells, life consisted of assemblies of self-reproducing macromolecules".<ref>Taylor WR (2005) Stirring the primordial soup ''Nature'' 434:705 PMID 15815609)</ref>
With these advances in organic chemistry, biochemistry and molecular biology, a new view of the origin of life forms on earth emerged. "It is now widely believed that almost four billion years ago, before the first living cells, life consisted of assemblies of self-reproducing macromolecules".<ref>Taylor WR (2005) Stirring the primordial soup ''Nature'' '''434''':705 PMID 15815609)</ref>


Studying the biochemistry of RNA and proteins involved purifying unstable compounds from sources that also contained enzymes for their breakdown. Unravelling the movement of RNA out of the nucleus to the [[endoplasmic reticulum]] and [[ribosomes]], and pinpointing the mechanics of how proteins were assembled in the cell, were heroic enterprises requiring marathon experiments. Work advanced, but, needed labor-intensive manipulations that could take several days in refrigerated 'cold rooms', without substantial delay between steps. DNA is much more stable, and with DNA chemistry, biologists could take off their parkas and come out of the cold rooms. By the last part of the Twentieth Century, the technique of [[PCR]] allowed experiments on tiny samples of DNA to be done in many ordinary laboratories, and progress in molecular biology accelerated.
Studying the biochemistry of RNA and proteins involved purifying unstable compounds from sources that also contained enzymes for their breakdown. Work advanced, but successful experiments required labor-intensive manipulations that could take several days in refrigerated 'cold rooms', without substantial delay between steps. Consequently, unraveling the movement of RNA out of the nucleus to the [[endoplasmic reticulum]] and [[ribosomes]], and pinpointing the mechanics of how proteins were assembled in the cell, were heroic enterprises requiring marathon procedures (often performed by scientists dressed in parkas!).  


Attention turned to the DNA sequences that coded for proteins, and the genetic traits that Mendel had observed in his peas were found to have physical correlates in the genes that these sequences provided. Superfamilies of genes were found in different organisms that underlay the existence of those families of related proteins that were identified in diverse tissues and diverse species.  
Attention turned to the DNA sequences that coded for proteins, and the genetic traits that Mendel had observed in his peas were found to have physical correlates in the genes that these sequences provided. DNA is more stable than RNA and most proteins, and with DNA chemistry the experiments were easier. They could be performed in usual laboratory conditions and did not require the haste or continuity that RNA work had demanded. By the end of the 20th century, the technique of [[PCR]] conceived by [[Kary Mullis]] allowed experiments on tiny samples of DNA to be done very efficiently, with automated sets of reactions, and progress in molecular biology accelerated. Superfamilies of genes were found in different organisms that underlay the existence of those families of related proteins that were identified in diverse tissues and diverse species.
 
[[Image:Mitochondria.jpg|left|thumb|350px|Mitochondria are the 'power plants' of cells that convert organic materials into energy. Mitochondria have their own DNA and may be descended from free-living prokaryotes that were related to ''[[Rickettsia]]'' bacteria]]
[[Image:Mitochondria.jpg|left|frame|Mitochondria are the 'power plants' of cells that convert organic materials into energy. Mitochondria have their own DNA and may be descended from free-living prokaryotes that were closely related to ''rickettsia'' bacteria]]
Understanding the ultrastructure of cells along with the chemical and physical properties of the organelles brought more new ideas to biology. [[Mitochondria]] are tiny organelles found in almost all [[Cell (biology)|cells]], and these are the factories that produce energy for the cell. These mitochondria, so essential for living cells, have their own DNA and ribosomes - but their form is more similar to those of ''bacteria'' rather than mammalian cells. These observations led [[Lynn Margulis]] to advocate an outlandish hypothesis for the origin of mitochondria being derived from bacteria assimilated into eukaryotic cells. Her [[endosymbiotic theory]] was finally published after being "rejected by about fifteen scientific journals"<ref>Sagan(Margulis) L  (1967) On the origin of mitosing cells ''J Theoretical Biology'' '''14''':255-74 PMID 11541392
Understanding the ultrastructure of cells along with the chemical and physical properties of the organelles brought more new ideas to biology. [[Mitochondria]] are tiny organelles that are found in almost all cells, and these are the factories that produce energy for the cell; the complicated chemical process that produce high energy compounds from the breakdown of food molecules is called [[oxidative phosphorylation]]. These mitochondria, so essential for living cells, were found to have their own DNA - but its form was that of ''bacteria'' rather than mammalian cells. The mitochondria in active human cells were not really ''human'' at all, at least not in origin. These organelles had been assimilated into eukaryotic cells and divided along with them, keeping pace with all the generations of the cell, but according to their'' own'' genetic code, a circular strand of DNA that resembles the genome of bacteria. These energy-producing organelles of animal cells were not the only organelles found that derived from a different life form; the [[chloroplast]]s of plant cells are another. The novel concept that at least some organelles might be the descendants of ancestral 'hitch-hikers' was conceived.
* Margulis L Chapter 7 <!--Chapter Title  Gaia is a tough bitch, (sensitively for the record)-->in John Brockman (1995) [http://www.edge.org/documents/ThirdCulture/n-Ch.7.html ''The Third Culture: Beyond the Scientific Revolution''] ISBN 0684817047</ref>, but is widely accepted today. These energy-producing organelles of animal cells are not the only organelles found that derived from a different life form; the [[chloroplast]]s of plant cells are another.  


===Back to the baby===
===Back to the baby===
The age-old question of how a new baby came to be born of man and woman took equally unexpected turns. The single cell that every human begins with does ''not'' receive identical types of genetic contributions from mother and father, after all. One of the biggest differences between what each parent gives their baby was found to do with what’s in the egg, but ''not'' in the sperm, and that would be cell organelles, specifically mitochondria. Each individual human being is made up of cells with mother's mitochondria ''only'', including the mitochondrial DNA.  
The age-old question of how a new baby came to be born of man and woman took equally unexpected turns. The single cell from which every human develops does ''not'' receive equal genetic contributions from mother and father, after all. One of the biggest differences in the parents’ contribution to their baby is found to be cell organelles, specifically mitochondria. Each individual human being is made up of cells which obtain mitochondria and their [[Mitochondrial DNA|mitochondrial DNA]] (mtDNA) exclusively from the mother.  


Imprinting of genes by parental origin is another asymmetry that had been unsuspected. Even the genes in the ''nucleus'' of germ cells are not always treated identically in the newly fertilized egg, but can act differently depending on whether they came from the sperm's nucleus or the ovum's before they joined. Some parental genes were found to be marked in the germ cells (egg and sperm) to be either active or inactive in the new embryo, by the addition of chemical modifiers (like methyl groups) to the DNA.  
Even genes in the nucleus of germ cells (egg and sperm) do not always act identically in the newly fertilized egg. Some genes are marked in the germ cells to be either active or inactive in the new embryo, by the addition of chemical modifiers (like methyl groups) to the DNA. This so-called [[Imprinting (genetics)|imprinting]] of genes by parental origin is another asymmetry that had been unsuspected. Oddly, this confirmed some of the suspicions of Aristotle after all, but in the very ''opposite'' way to that imagined by the ancients. "Genes expressed from the paternally inherited copy generally increase resource transfer to the child, whereas maternally expressed genes reduce it."<ref>Constancia M ''et al.'' (2004) Resourceful imprinting ''Nature'' '''432''':53-7 PMID 15525980</ref> In other words, the genetic material provided by the father has a role slanted to provide nourishment to the fetus whereas the same genes, when inherited through the mother, act differently. The placenta grows from the same fertilized egg that builds the baby, and nourishes the new infant from the mother's womb - but it's the father's genes that are more important for the placental membrane's success in obtaining nutrients. It's as though there is a 'battle' between the father's genes and the mother's genes - as if the father's genes want the biggest baby possible, while the mother's genes want a small baby to protect the mother.<ref>Haig D (1992) Genomic imprinting and the theory of parent-offspring conflict. ''Seminars in Developmental Biology'' '''3''':153-160.
 
The suspicions of Aristotle turned out to have an oddly co-incident basis in genetics after all, but in the very ''opposite'' way to that imagined by the ancients! "Genes expressed from the paternally inherited copy generally increase resource transfer to the child, whereas maternally expressed genes reduce it." <ref>Constancia M, Kelsey G, Reik W (2004) Resourceful imprinting. ''Nature'' 432:53-7 UI 15525980</ref> In other words, the genetic material provided by the'' father'' has a role slanted to provide nourishment to the fetus. The same genes, when inherited through the nucleus of the egg rather than that of the sperm, act differently. The placenta nourishes the new infant from the mother's womb - but it's the father's genes that are more important for its success in obtaining nutrients. It's as though there is a 'battle' between the father's genes and the mother's genes - it seems almost as though the father's genes want the biggest baby possible, while the mother's genes want a small baby to protect the mother.
General concepts on gender distinctions and inheritance are discussed in:
* Matt Ridley (1993) ''The Red Queen : Sex and the Evolution of Human Nature'' ISBN 0140167722,
* Helena Cronin (1991) ''The Ant and the Peacock'' ISBN 0521457653 </ref>


== The continuing story ==
== The continuing story ==
By the end of the twentieth century, progress in molecular biology had given rise to the [[Human Genome Project]], an ambitious vision to sequence every single human gene. Not only was that vast project, involving hundreds of laboratories in many countries, completed ahead of schedule [http://www.ornl.gov/sci/techresources/Human_Genome/project/clinton1.shtml], but we now also have the complete genomes of many other species with which to compare the human genome. We can actually trace how individual genes have evolved across species, and map out our ancestry to the most primitive life forms in detail. However, for all the advances that have been made in the study of living things, biology remains a science that has only begun to provide a basis for understanding life. The human genome project, so far from answering all our questions, instead opened up many new ones. One of the biggest surprises from the project was the realisation of how'' few'' genes it takes to make a human being - just 28,000 or so, not many more than is needed to make the very simplest of animals. It seems that to really unravel our genetic code, we must start the difficult process of understanding all the ways that these genes can interact with each other. The 'vital spark' of life might have its origins in molecules, but knowing just what those molecules are has brought us only a step into the light of its fire.
By the end of the 20th century, progress in molecular biology had given rise to the '[[Human genome project|human genome project]]', an ambitious vision to sequence the DNA of every single human gene. This vast project drew on the inputs of hundreds of scientists in many different countries, and was completed ''ahead'' of schedule.<ref>[http://www.ornl.gov/sci/techresources/Human_Genome/project/clinton1.shtml President Clinton announces the completion of the first survey of the entire human genome.] June 25, 2000</ref> That unexpected speed was another of technology's boons to biology.
 
==Etymology==
The word 'Biology' is formed by combining two [[Ancient Greek|Greek]] words ''{{Polytonic|βίος}}'' ''(bios)'', meaning 'life', and ''{{Polytonic|λόγος}}'' ''(logos)'', meaning 'study of'. "Biology" in its modern use was probably introduced independently by both [[Gottfried Reinhold Treviranus]] (''Biologie oder Philosophie der lebenden Natur'', 1802) and by [[Jean-Baptiste Lamarck]] (''Hydrogéologie'', 1802). Although the word 'Biology' is sometimes said to have been coined in 1800 by Karl Friedrich Burdach, it appears in the title of Volume 3 of Michael Christoph Hanov's ''Philosophiae naturalis sive physicae dogmaticae'': ''Geologia, biologia, phytologia generalis et dendrologia'', published in 1766.


So, in 2006, we can map out how chromosomes have evolved across species, as well as use these genomic resources to trace our own distant ancestry back to the enigmatic traces of a preceding world.<ref>Benner SA ''et al.'' (1989) [http://www.pnas.org/cgi/content/abstract/86/18/7054 Modern metabolism as a palimpsest of the RNA world.] ''Proc Natl Acad Sci U S A'' '''86''':7054-8 PMID 2476811</ref> Biologists may have once predicted that reaching this level of understanding would open up the answers to some of our deepest questions about life. However, for all the advances that have been made over the centuries, biology has only begun to clarify the living world. The genome projects, far from settling all uncertainties, have raised a whole new set of questions. One of the biggest surprises was the realization of how ''few'' genes it takes to make a human being - just 28,000 or so, not many more than is needed to make simple animals, and fewer than the number of genes in many plants.


==Main topics and discoveries==
We have learned that simply identifying the sequence of DNA is not enough to reveal the 'blueprint' of life or of man. To unravel the significance of the genetic code, biologists must go beyond DNA sequences and start the process of understanding all the [[RNA interference|ways that genes interact]] at the level of ''whole'' plants and animals. [[Systems biology|Systems biologists]], who aim to develop models (or representations) of whole organisms, their organ systems, and the larger categories (e.g., species, ecosystems), in which the individual organism is only a part, are becoming increasingly important. And so we come full circle, again relying on the more traditional fields of biology to probe the secrets that are not apparent from focusing only on molecular information. This circular route may not have solved the riddle of life, but it has advanced our knowledge tremendously rather than returning us to the start.
{{main|List of biology topics|History of plant systematics|History of zoology, post-Darwin|History of zoology (before Darwin)}}
{{main|History of molecular biology|Timeline of biology and organic chemistry}}
*[[Evolution]]
*[[Common descent]]
*[[Homeostasis]]
Major discoveries in biology include:
* [[Cell theory]]
* [[Germ theory of disease]]
* [[Genetics]]
* [[Evolution]]
* [[DNA]]
 
{{main|List of biology disciplines}}
{{biology-footer}}


==References==
==References==
;Citations
<div class="references-small" style="-moz-column-count:2; -webkit-column-count:2; column-count:2;">
<div class="references-small">
<references />
<references/>
</div>
</div>
;Further reading
Timothy Shanahan ''The Evolution of Darwinism: Selection, Adaptation and Progress in Evolutionary Biology'' (2004) ISBN 0521834139
Michel Morange ''A History of Molecular Biology''  ISBN 0−674−39855−6; see [http://www.nature.com/nm/journal/v5/n2/full/nm0299_140.html review here]
[[Stephen Jay Gould]] ''[[Full House: The Spread of Excellence From Plato to Darwin]]'' (1996), ISBN 0-517-70394-7 (Released outside North America as ''[[Life's Grandeur: The Spread of Excellence From Plato to Darwin]]'' (1996), ISBN 0-099-89360-6)
[[Richard Dawkins]] ''[[The Ancestor's Tale]]'' (2004) ISBN 0-618-00583-8; Audio (2005) ISBN 0-7528-7321-0
==Selected external links==
The following links have been reviewed and are recommended because, ''at the time of their inclusion'', they provided accurate information and portals to additional excellent web resources. Many other excellent links have been omitted through no fault of their own.
* [http://www.aibs.org/virtual-library The American Institute of Biological Sciences] (ABIBS) Virtual Library is free to all visitors
* [http://cellbiol.com The Bio-Web] reviews and gives access to information in Cell and Molecular Biology, includes "news" in plain language
* [http://www.cellbio.com Cell and Molecular Biology Online] is a resource for professionals that includes links and some information for all
* [http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/ Kimball's Biology Pages] are a online elementary college biology textbook, based on the author's 1996 printed edition.
[[Category:Biology| ]]
[[Category:CZ Live]]
[[Category:Biology Workgroup]]
[[Category:Biology Workgroup (Top)]]

Latest revision as of 11:48, 16 June 2024

This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Gallery [?]
Video [?]
Student Level [?]
Signed Articles [?]
 
This version approved either by the Approvals Committee, or an Editor from the listed workgroup. The Biology Workgroup is responsible for this citable version. While we have done conscientious work, we cannot guarantee that this version is wholly free of mistakes. See here (not History) for authorship.
Help improve this work further on the editable Main Article!
See also health sciences

Biology is the science of life.[1] Biologists study all aspects of Earth's living things, including the dynamic processes within them that enable them to develop, survive, and reproduce. Those vital processes include the harnessing of energy and matter, the synthesis of the materials that make up the body, the healing of injuries, and the reproduction of the organism, among many other activities.

The mysteries of life have fascinated all peoples throughout history, and curiosity about the physical nature and apparent relatedness of people, animals and plants exists in every known society. Some of that curiosity arises from a desire to control life processes and to exploit natural resources. Pursuit of the answers has led to an understanding of organisms that has steadily improved our standard of living. Other questions come from a desire to understand nature, rather than to control it; and, in answering these, biological investigation has changed our view of the world.

Although the word 'biology' is sometimes used conversationally to refer to matters that concern flesh and blood, and living creatures, this introductory article focuses on biology as a formal science. Unlike non-scientists who are learned in natural lore, biologists formally employ the scientific method, and incorporate mathematics, biophysics, chemistry and other disciplines into their work.


The scope of biology

How did life on earth begin? What features separate something that is alive from something that is dead or inanimate? How have living things, ranging from microscopic bacteria to towering trees, changed the earth's oceans, atmosphere and geology over time? Biologists use science to approach such fundamental questions, questions that also concern the philosopher, the rabbi, the imam, or the priest - as well as every person who retains a sense of wonder. The scientific theories constructed as answers rarely agree with spiritual doctrines. Some religious leaders have deplored the scientist's mechanistic approach, because it removes the requirement for active intervention by a Creator. Some scientists, such as Francis Crick, have welcomed biological explanations as providing a rational basis for the world, free of the need to invoke supernatural powers.[2] Others[3] identify spiritual harmonies between the deeper insights provided by science and religious thought. In this view, mathematical equations and the language of prophets are simply two different forms of human expression, each attempting to describe a higher dimension than ordinary human experience.

Biology based advances in the health sciences have helped prevent many deadly infectious diseases such as typhoid in developed countries.

Although biology addresses fundamental issues about living things, it also addresses practical questions. The applications of biology have enabled the health sciences to become effective healing arts, and the world's food supply to become safer and more plentiful.

Many independent scientific fields make up biology. Natural history (the study of individual species like white-tailed deer, sugar maple trees, box jellyfish and timber wolves) was one of the first areas to develop; in natural history, whole organisms are studied in an attempt to make sense of the order of nature. When plants and animals are considered in a context of how each affects the other and their environment, then the biologist's focus is on ecology. Some fields of biology focus on living organisms and their interactions within a certain realm of the earth, as in marine biology; others focus on particular aspects of living organisms, like their structure (morphology and anatomy) or function (physiology). Studies of animals form the field of zoology, whereas the study of plants is called botany. Medicine and the health sciences apply biology to understanding disease and to improving health.

The development of biology

For more information see Citizendium's article on History of biology

This article explores just a few selected themes; those themes center on the origin of life (both 'life on earth' and the creation of a new infant) and are followed through the centuries from ancient Greece to the present day. It is apparent that a philosophy of critical thinking, investigative methods that rely on empirical evidence, and the availability of technological tools have, together, accounted for how these ideas have changed. The development of biology has drawn on many more topics, and a much larger geographical area than referred to here. But the science of biology has a continuous thread through the centuries that began with the ancient Greek philosophers, and has generally followed the winding pattern of advancement presented here.

Biology in the ancient world

People rely on plants and animals for sustenance, and Paleolithic cave paintings show that meticulously careful observations of prey have been expressed for at least tens of millennia. Human interest in food was not limited to passive considerations since, rather than eaten as found, it was carried from place to place and processed in various ways. In Neolithic times, probably somewhere in the fertile Nile delta, more 'planned' interactions with certain plants and their seeds led to the establishment of agriculture in many societies. When the intellectual consideration of what plants are was combined with experiments to understand their growth, then botany, the science of plants began.[4]

Anatomy and zoology both date back to at least the 4th century BCE, and the ancient Greek philosopher Aristotle.[5] In the first known book that discusses how life in the womb begins, Aristotle suggested that the mother provides the substance needed to create a new life, but that the father provides this base material with the essence of the child. He thought that the female's actual physical contribution to the baby was her menstrual blood, and that the male's corresponding contribution was his semen. Aristotle used logic and observation to arrive at his theory, which, in the main, was still accepted 2000 years later. His conclusion that the woman's portion was the mere soil for the man's seed, and that the man's donation supplied all the essential humanity, was probably influenced by the assumption (in his society) that women were less highly developed than men. A popular idea that grew out of Aristotle's musings was that sperm contained a perfect miniature version of the new baby - a homunculus.

The writings of the Greek scholars were preserved and cherished by the Romans, who added literature on the structure and function of animal and human bodies. The most influential of these was Galen, who was one of the most noted physicians in Rome. Galen performed public dissections and vivisections of animals, and used his findings to try to explain human illness. His writings survived the fall of Rome, and they formed a basis for the continuing advance of medicine.

Medieval Europe and the Arab world

With the Fall of Rome, many of the great Greek and Roman works were lost in Europe. Only a few survived, and few people could read them - both the literature and the readers often cloistered together in religious orders. The University of Padua was one of the rare places in Europe where organized learning continued, and later, Padua was to become one of the seats of the Enlightenment. Arab writers, in contrast, continued the work that had been established in the Roman empire. Copies of the old manuscripts were made, and new books of empirically derived medical procedures and theory were written. Later, when the Moors invaded Europe, these books became available to scholars there.

The European Renaissance and the 'scientific method'

See also History of scientific method

During the Renaissance, the authority of the 'classical' authors (such as Aristotle and Galen), and of religious doctrine (such as the teachings of the medieval Catholic Church), on the nature of living things began to be questioned in light of actual observation and experiment (the 'scientific method'). In the early 16th century, scholars had returned to reading Galen in the original Greek, and they emphasized his superiority over his later interpreters, stressing the importance of anatomy in his view of medicine. The Dutch physician Vesalius (1514-1564), although contemptuous of Galen, followed his methods to produce a new anatomy of the human body, De humani corporis fabrica (On the Workings of the Human Body). He is often called the founder of modern human anatomy.[6]

By the 17th century, the advantages of firm empirical evidence over the opinions of authorities were seen by such influential writers as Girolamo Fabrici of Italy and Francis Bacon of England (who coined the phrase knowledge is power). Rather than memorize the texts of Galen, or perform ritualized dissections as 'homage' to Galen's findings, the anatomy and physiology of animals began to be carefully explored in completely new directions. The early European biologists mapped the paths taken by the nerves and veins that traveled between organs, and analyzed their findings in an attempt to find general principles of the organization and function of the body. Theories in biology were still very preliminary, but the evidence for ideas that explained an order to living things revolutionized thinking in biology.

The Englishman William Harvey studied how embryos develop by observations of hens' eggs and by dissecting pregnant deer and other mammals. He speculated that development proceeded from one to another of the fetal forms he found, imagining that each of these forms was a stage in a continuous process. Although other of his experiments famously revealed the circulation of the blood, and identified the workings of the heart as a pump, when it came to early development he failed to see any sort of rational explanation. He could not understand how discrete organs in the developing fetus could form out of the amorphous materials in the just pregnant womb or newly fertile egg. He chose a spiritual explanation, postulating that the soul of the new individual was derived from the placement of sperm in the female tract, invoking the gist of the old Aristotelian argument. Still, he modified Aristotle's explanation by insisting that the male and female contributions were equally important. He refuted the notion that the fetus is made up by the specific materials contributed by the male that grow because of the separate materials contributed by the female. Instead, he argued that "the material out of which the chick is formed in the egg is made at the same time it is formed" and that "out of the same material from which it is made, it is also nourished".[7]

The 18th and 19th centuries: seeing the links between life forms

As detailed examination of plant and animal species became common, and the knowledge was shared among people in many different parts of the world, similar arrangements of body structure were recognized in many different species. In the 18th century, the Swedish naturalist Carolus Linnaeus proposed a way of systematically classifying all living things. His method gives a unique name to each kind of plant and animal, and organizes them in a way that stresses similarities of physical features - based on their comparative anatomy. This naming system is still used today, and each known species has a unique name that biologists all over the world recognize. The name has two parts: genus and species, the two most refined categories in the classification scheme. The language is Latin, which was the common written language of scholars in Europe in Linnaeus' time. Human beings, for example, belong to the species Homo sapiens (Latin for 'wise man') under the family hominidae (the great apes).[8]

Although this systematic classification of living things became widely accepted, at first it did not include the idea that all living things were related. For more than a hundred years afterward, most highly educated thinkers assumed that complicated life forms (even mice!) could spring to life from a setting of inanimate objects (such as old rags and bread crumbs left in a dark corner). In the 19th century, Louis Pasteur of France showed that this common notion, spontaneous generation, was a fallacy. His life's work in bacteriology, along with the later work of the German physician Robert Koch, was important in establishing the germ theory of disease. That work helped bring the traditional practice of medicine into the health sciences and establish a scientific basis for the field of public health.

In England, Charles Darwin built on the idea of natural selection as a way to explain how diverse creatures might have common patterns of form. His observations of the variations of animal life on remote islands made him realize that individual birds, mammals and reptiles might thrive, or die, according to how well their characteristics 'fitted' their immediate habitat. He realized that individual members of any species were also different from each other in ways that made some more successful than others in producing offspring. If these kinds of differences were passed on to the offspring, then the features that made some individuals successful would become more common in each generation. From this insight, he made the bold leap in understanding to realize that perhaps, in enough time, entirely new species might arise. His theories became incorporated into the theory of evolution which suggests that all present living things descended from past living things. The existence of common ancestors would account for similar body forms among descendants, and provided a plausible basis for the wide-spread existence of patterns of very similar features among groups of plants and animals: the very patterns that Linnaeus had used to formulate his categories in classification. This idea was not entirely new, but previous proponents had found it hard to understand how such incredibly diverse life forms might come about in the few thousand years that the world was thought to have existed. By Darwin's time, advances in Earth Science had found evidence that the earth was millions of years older than had been previously suspected, and this made the idea that organisms had evolved by many small, incremental changes over thousands of generations much more plausible. Evolutionary change from ancient life was accepted by biologists as a theory that explained both the diversity of life forms and the existence of patterns of common features.

In the late 19th century, an Austrian monk, Gregor Mendel, analyzed how traits were inherited from generation to generation in garden peas, and he concluded that the male and the female parent contribute equally. Instead of a fuzzy 'blending' of the characteristics of parents, Mendel saw that discrete traits of each individual were inherited intact, apparently based on a particulate 'binary system' of alleles that coded for the quality of each of them. A pea might be wrinkled or smooth, for example, and the particular pair of alleles inherited by each pea then determined what the next generation would be like. Mendel also saw that these alleles might be either 'dominant' or 'recessive'. Together, these ideas allowed Mendel to predict the number of offspring that would have each characteristic, and the field of genetics began.

Technological advances in biology

First glimpses of the microscopic world

When sperm were first seen under the microscope, it was thought that each contained a perfect miniature human being

The advance of biological thinking depended on the communication of these ideas, and also on technology. Even the communication of ideas in science has depended on technology; in a sense, the printing press was an invention that facilitated the Enlightenment, and today, electronic communication has accelerated the rate of research. The availability of technical tools for experimentation has in a large part determined the course of progress.

Magnified human sperm cells, approx. 125x in thumbnail image

The features of plants and animals, for example, have been understood on an entirely different level with technological advances that provided new ways to study them. The microscope, modified by Antonie van Leeuwenhoek in the 17th century, revealed details of structure in the bodies of organisms that had never before been suspected. That amorphous material that Harvey could not fathom as the progenitor of organs might have seemed to him to be of a wholly different nature had he the advantage of magnification. One of the new sights that van Leeuwenhoek described was individual ova and spermatozoa. Being familiar with the theories of Aristotle and their popular interpretation, he reported that he could actually see homunculi in the heads of the living sperm - an example of even a great scientist perceiving his expectations, rather than what was really there. Science is always influenced by past ideas. No scientist can consider any hypothesis, or analyze any set of experimental results without using his or her mind, and all the blinkers and biases that come with it - however hard the good scientist tries to shake free and be rational and objective, that mind is both consciously and unconsciously stamped with the culture that produced it.

Not only was the structure of flesh and plants seen in new detail with the microscope, but new types of organisms were also revealed: micro-organisms that could not be detected with the naked eye.[9] And so, like all important technological advances in biology, the microscope led to new ideas about living things. It was realized that tissues were composed of cells, the field of microbiology was born, and the ground was prepared for the germ theory of disease, an idea that helped bring the traditional practice of western medicine into the field of health science and modern medicine. Further developments led to the modern compound microscope by the end of the 19th century, with a much higher resolution allowing the visualization of dividing cells, and the chromosomes of the nucleus.

Cell biology begins

Cell biology began around 1900, with the discovery of the chromosomes and the understanding of mitosis and meiosis. Application of Mendel's fundamental laws of heredity to genetic linkage analysis allowed the correlation of specific plant or animal traits to be ordered as gene loci in the first genetic maps.[10] The culmination of this work and evidence from cytogenetics, led to the concept of genes as heritable traits that had a physical structure in the chromosomes; in the words of Thomas Morgan "...there is an ever increasing body of information that points clearly to the chromosomes as the bearers of the Mendelian factors, it would be folly to close one's eyes to so patent a relation."[11]

Towards the mid-20th century, with the development of the electron microscope, ultra-high power examination of cells was possible and the field of cell biology began to unravel the inner structure of cells, discovering discrete organelles that could only be seen well at such high magnification. Closer examination of the structure of the cell was combined with the ability to physically separate out the components of the cells in bulk by density and chemical properties and analyze each fraction using methods from biochemistry and biophysics. The important techniques that allowed this analysis include ultracentrifugation and gel electrophoresis. Advances in this new field of cell biology confirmed that living things were composed of cell units and extended the understanding of just how cells carried out life processes.

Science differs from religious and political dogmas in at least one major manner – its tenets are not 'sacred', but are always there to be questioned and tested. Thus over time, ideas have changed and many theories have been abandoned or disproved, including the homunculus theory of fetal development. With the resolving power of the electron microscopes, able to image cell structure at a magnification of tens of thousand-fold, that 'little man' inside the sperm cell vanished forever.

Molecular biology, and a revolution in understanding

In the 20th century, the properties and roles of some of the large organic molecules (macromolecules) found in living things were examined. Proteins, which are one type of macromolecule, have three-dimensional shapes that give them special properties. Some proteins, known as enzymes, have specialized sites able to catalyze the chemical reactions critical for metabolism. Other proteins act as building blocks that make up the filaments that support the cytoplasm of cells, or lend such qualities as waterproofing to skin (keratin) or tensile strength to tendons (collagen). Proteins also provide an elaborately configured signaling network that guides responses to the environment. These sophisticated activities range from the selective transport of ions and food in and out of cells, to the ability of immune cells to recognize and attack only foreign germs, rather than rain friendly fire on other parts of the body. Strikingly, as protein sequences were compared between species, biologists appreciated a new variation on the old theme that research in comparative anatomy had raised three hundred years before. First, recurring anatomical patterns had been recognized in different animals, like the arrangement of bones in a bat's wing, a seal's flipper and a man's arm; and later, the molecular structures and shapes of the various families of proteins were recognized to be similarly repeating. The amino acid sequences within the protein families even show similarities between kingdoms like bacteria and animals, confirming that all living things are related.

The 'double helix' of DNA. Watson and Crick declared “It has not escaped our notice that the specific pairing ... suggests a possible copying mechanism for the genetic material.” DNA animated

By 1953, the painstaking x-ray studies of Rosalind Franklin allowed the imagination of James Watson and Francis Crick to seize upon the structure of DNA.[12] The double helix structure of that molecule revealed how information might be coded and passed from generation to generation, by showing how the DNA molecule could act as a 'template' for the synthesis of both itself, and a related molecule, RNA. Crick and others went on to propose that small RNA molecules might serve as adaptors that could be made from such a template, and be used to assemble amino acids to build proteins.

With these advances in organic chemistry, biochemistry and molecular biology, a new view of the origin of life forms on earth emerged. "It is now widely believed that almost four billion years ago, before the first living cells, life consisted of assemblies of self-reproducing macromolecules".[13]

Studying the biochemistry of RNA and proteins involved purifying unstable compounds from sources that also contained enzymes for their breakdown. Work advanced, but successful experiments required labor-intensive manipulations that could take several days in refrigerated 'cold rooms', without substantial delay between steps. Consequently, unraveling the movement of RNA out of the nucleus to the endoplasmic reticulum and ribosomes, and pinpointing the mechanics of how proteins were assembled in the cell, were heroic enterprises requiring marathon procedures (often performed by scientists dressed in parkas!).

Attention turned to the DNA sequences that coded for proteins, and the genetic traits that Mendel had observed in his peas were found to have physical correlates in the genes that these sequences provided. DNA is more stable than RNA and most proteins, and with DNA chemistry the experiments were easier. They could be performed in usual laboratory conditions and did not require the haste or continuity that RNA work had demanded. By the end of the 20th century, the technique of PCR conceived by Kary Mullis allowed experiments on tiny samples of DNA to be done very efficiently, with automated sets of reactions, and progress in molecular biology accelerated. Superfamilies of genes were found in different organisms that underlay the existence of those families of related proteins that were identified in diverse tissues and diverse species.

Mitochondria are the 'power plants' of cells that convert organic materials into energy. Mitochondria have their own DNA and may be descended from free-living prokaryotes that were related to Rickettsia bacteria

Understanding the ultrastructure of cells along with the chemical and physical properties of the organelles brought more new ideas to biology. Mitochondria are tiny organelles found in almost all cells, and these are the factories that produce energy for the cell. These mitochondria, so essential for living cells, have their own DNA and ribosomes - but their form is more similar to those of bacteria rather than mammalian cells. These observations led Lynn Margulis to advocate an outlandish hypothesis for the origin of mitochondria being derived from bacteria assimilated into eukaryotic cells. Her endosymbiotic theory was finally published after being "rejected by about fifteen scientific journals"[14], but is widely accepted today. These energy-producing organelles of animal cells are not the only organelles found that derived from a different life form; the chloroplasts of plant cells are another.

Back to the baby

The age-old question of how a new baby came to be born of man and woman took equally unexpected turns. The single cell from which every human develops does not receive equal genetic contributions from mother and father, after all. One of the biggest differences in the parents’ contribution to their baby is found to be cell organelles, specifically mitochondria. Each individual human being is made up of cells which obtain mitochondria and their mitochondrial DNA (mtDNA) exclusively from the mother.

Even genes in the nucleus of germ cells (egg and sperm) do not always act identically in the newly fertilized egg. Some genes are marked in the germ cells to be either active or inactive in the new embryo, by the addition of chemical modifiers (like methyl groups) to the DNA. This so-called imprinting of genes by parental origin is another asymmetry that had been unsuspected. Oddly, this confirmed some of the suspicions of Aristotle after all, but in the very opposite way to that imagined by the ancients. "Genes expressed from the paternally inherited copy generally increase resource transfer to the child, whereas maternally expressed genes reduce it."[15] In other words, the genetic material provided by the father has a role slanted to provide nourishment to the fetus whereas the same genes, when inherited through the mother, act differently. The placenta grows from the same fertilized egg that builds the baby, and nourishes the new infant from the mother's womb - but it's the father's genes that are more important for the placental membrane's success in obtaining nutrients. It's as though there is a 'battle' between the father's genes and the mother's genes - as if the father's genes want the biggest baby possible, while the mother's genes want a small baby to protect the mother.[16]

The continuing story

By the end of the 20th century, progress in molecular biology had given rise to the 'human genome project', an ambitious vision to sequence the DNA of every single human gene. This vast project drew on the inputs of hundreds of scientists in many different countries, and was completed ahead of schedule.[17] That unexpected speed was another of technology's boons to biology.

So, in 2006, we can map out how chromosomes have evolved across species, as well as use these genomic resources to trace our own distant ancestry back to the enigmatic traces of a preceding world.[18] Biologists may have once predicted that reaching this level of understanding would open up the answers to some of our deepest questions about life. However, for all the advances that have been made over the centuries, biology has only begun to clarify the living world. The genome projects, far from settling all uncertainties, have raised a whole new set of questions. One of the biggest surprises was the realization of how few genes it takes to make a human being - just 28,000 or so, not many more than is needed to make simple animals, and fewer than the number of genes in many plants.

We have learned that simply identifying the sequence of DNA is not enough to reveal the 'blueprint' of life or of man. To unravel the significance of the genetic code, biologists must go beyond DNA sequences and start the process of understanding all the ways that genes interact at the level of whole plants and animals. Systems biologists, who aim to develop models (or representations) of whole organisms, their organ systems, and the larger categories (e.g., species, ecosystems), in which the individual organism is only a part, are becoming increasingly important. And so we come full circle, again relying on the more traditional fields of biology to probe the secrets that are not apparent from focusing only on molecular information. This circular route may not have solved the riddle of life, but it has advanced our knowledge tremendously rather than returning us to the start.

References

  1. Etymology The word 'Biology' is formed by combining two Greek words βίος (bios), meaning 'life', and λόγος (logos), meaning 'study of'. 'Biology' in its modern use was probably introduced independently by both Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) and by Jean-Baptiste Lamarck (Hydrogéologie, 1802). Although the word 'biology' is sometimes said to have been coined in 1800 by Karl Friedrich Burdach, it appears in the title of Volume 3 of Michael Christoph Hanov's Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia, published in 1766.
  2. The evolutionary biologist Richard Dawkins (2006) sets out the secular humanist case in The God Delusion ISBN 9780058259
  3. Intuitive concepts, such as, to use Richard Dawkins term, "Einsteinian religion" and the common intuition that animals have a "living essence", and humans a "soul", are not part of the direct scientific conception of modern biology, but surprisingly, being arguably part of innate human behavior, they are part of the vigorous modern field of evolutionary psychology. See for instance, Steven Pinker (2002) The Blank Slate ISBN 014027605X, and Dawkins (2006) for extensive discussions.
  4. Jared Diamond (1997) Guns, Germs, and Steel ISBN 0393317552
  5. Aristotle's Biology in The Stanford Encyclopedia of Philosophy for a summary of Aristotle's biology and references to works by scholars interpreting his biological ideas.
  6. Nutton V (2002) Portraits of science. Logic, learning, and experimental medicine Science 295:800-1 PMID 11823624
  7. Van Speybroeck L et al. (2002) Theories in early embryology: close connections between epigenesis, preformationism, and self-organization Ann NY Acad Sci 981:7-49 PMID 12547672
  8. For a more modern view on differing methods of classifying living things, see Marc Ereshefsky (2001) The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy ISBN 054781701 Reviewed in Nature and in Science
  9. Anton(ie) van Leeuwenhoek. Encyclopedia of World Biography 2nd ed. 17 Vols. Gale Research, 1998. Reproduced in Biography Resource Center. Farmington Hills, Mich.: Thomson Gale. 2006
  10. Sturtevant, A. H. (1913) The linear arrangement of six sex-linked factors in Drosophila
  11. Morgan TH Sturtevant AH Muller MJ and Bridges CB (1915) The Mechanism of Mendelian Heredity Henry Holt and Company
  12. Watson JD Crick F (1953) The Molecular structure of Nucleic Acids: a structure for deoxyribose nucleic acid Nature 171:737-738. The National Library of Medicine's PDF copy in the Francis Crick Documents Collection.
  13. Taylor WR (2005) Stirring the primordial soup Nature 434:705 PMID 15815609)
  14. Sagan(Margulis) L (1967) On the origin of mitosing cells J Theoretical Biology 14:255-74 PMID 11541392
  15. Constancia M et al. (2004) Resourceful imprinting Nature 432:53-7 PMID 15525980
  16. Haig D (1992) Genomic imprinting and the theory of parent-offspring conflict. Seminars in Developmental Biology 3:153-160. General concepts on gender distinctions and inheritance are discussed in:
    • Matt Ridley (1993) The Red Queen : Sex and the Evolution of Human Nature ISBN 0140167722,
    • Helena Cronin (1991) The Ant and the Peacock ISBN 0521457653
  17. President Clinton announces the completion of the first survey of the entire human genome. June 25, 2000
  18. Benner SA et al. (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci U S A 86:7054-8 PMID 2476811