Archive:New Draft of the Week

From Citizendium
Revision as of 03:25, 3 September 2009 by imported>Milton Beychok (Transcluded Les Paul)
Jump to navigation Jump to search

The New Draft of the Week is a chance to highlight a recently created Citizendium article that has just started down the road of becoming a Citizendium masterpiece.
It is chosen each week by vote in a manner similar to that of its sister project, the Article of the Week.

Add New Nominees Here

To add a new nominee or vote for an existing nominee, click edit for this section and follow the instructions


Table of Nominees
Nominated article Vote
Score
Supporters Specialist supporters Date created
Zionism 2 Milton Beychok Howard C. Berkowitz 24 August 2009
Les Paul 1 Meg Ireland 2 September 2009

If you want to see how these nominees will look on the CZ home page (if selected as a winner), scroll down a little bit.

Recently created pages are listed on Special:NewPages.

Transclusion of the above nominees (to be done by an Administrator)

View Current Transcluded Nominees (after they have been transcluded by an Administrator)

The next New Draft of the Week will be the article with the most votes at 1 AM UTC on Thursday, 4 September, 2009. I did the honors this time. Milton Beychok 04:30, 27 August 2009 (UTC)

Nominated article Supporters Specialist supporters Dates Score
Developing Article Zionism: The ideology that Jews should form a Jewish state in what is traced as the Biblical area of Palestine; there are many interpretations, including the boundaries of such a state and its criteria for citizenship [e]

In general terms, Zionism is the belief in a historical right to a homeland for the Jewish people in Israel. Variants have existed for centuries and continue to proliferate, but the core definition of modern Zionism is generally associated with the publication of Theodor Herzl's (1860 - 1904) The Jewish State in 1896, although the term, and indeed a philosophical discussion, seems to have been presented earlier by Nathan Birnbaum. In 1890, Birnbaum coined the terms “Zionist” and “Zionism,” and, in 1892, “Political Zionism.”

Herzl published it in the belief that antisemitism would never disappear; his views had been reinforced with his involvement in the affair of Alfred Dreyfus in France in 1894. Birnbaum and Herzl worked together at the First Zionist Conference, but developed ideological differences. Birnbaum had begun to question the political aims of Zionism and to attach increasing importance to the national-cultural content of Judaism. Birnbaum eventually left the Zionist movement and later became a leading spokesman for Jewish cultural autonomy in the Diaspora. Still, when a distinction is made, Herzl is often given credit for political Zionism as a subset.

Zionism is not monolithic; it was not monolithic prior to the establishment of the State of Israel. The leader of the Revisionist branch, Zev Jabotinsky (1880-1940) argued that the historic Jewish state was on both sides of the Jordan River; he is the founder of what became the modern Likud political party, but earlier argued for a distinct Jewish Legion fighting unit in World War I. Ahad Ha'am (1856-1927), however, articulated a spiritual Zionism, associated with renewal of Jewish culture and less focused on geography; his passion was worldwide education with limited settlement in Palestine. He felt that to settle there, one needed first to be a passionate religious Jew; it was not there as a place of physical safety.

Some regard it as appropriate for Jews scattered by the Biblical diaspora, while others see it perfectly practical to be a Jew in any liberal democracy other than Israel. Daniel Pipes, a strong Zionist associated with neoconservatism, makes the valid point that not all Jews are Zionists and not all Zionists are Jews. (Read more...)

Milton Beychok Howard C. Berkowitz 2


Developing Article Les Paul: (9 June 1915 – 13 August 2009) American innovator, inventor, musician and songwriter, who was notably a pioneer in the development of the solid-body electric guitar. [e]

Les Paul (9 June 1915 - 13 August 2009) was best known as a guitarist, and as one of the most important figures in the development of modern electric instruments and recording techniques. He was a pioneer in the development of the solid-body electric guitar (the Gibson Les Paul he helped design is one of the most famous and enduring models), multitrack recording, and various reverb effects.

Career

Paul, born Lester William Polfus (Polsfuss) in Waukesha, Wisconsin, first became interested in music at the age of eight, when he began playing the harmonica. After an attempt at learning to play the banjo, Paul began to play the guitar. By 13, Paul was performing semi-professionally as a country-music guitarist. At the age of 17, Paul played with Rube Tronson's Cowboys. Soon after, he dropped out of high school to join Wolverton's Radio Band in St. Louis, Missouri on KMOX.

In the 1930s, Paul worked in Chicago, Illinois in radio, where he performed jazz music. Paul's first two records were released in 1936. One album was credited to 'Rhubarb Red', Paul's hillbilly alter ego, and the other was in the backing band for blues artist Georgia White.

The Log

Paul was unsatisfied by the electric guitars that were sold in the mid 1930s and began experimenting with a few designs of his own. Famously, he created 'The Log' which was nothing more than a length of common "4 by 4" fence post with bridge, guitar neck, and pickup attached. For appearances he attached the body of an Epiphone jazz guitar, sawn lengthwise with the 'Log' in the middle. This solved his two main problems - feedback, as the acoustic body no longer resonated with the amplified sound, and sustain, as the energy of the strings was not dissipated in generating sound through the guitar body. (Read more...)

Meg Ireland 1


Current Winner (to be selected and implemented by an Administrator)

To change, click edit and follow the instructions, or see documentation at {{Featured Article}}.


This article is about Earth's atmosphere. For other uses of the term Atmosphere, please see Atmosphere (disambiguation).
This article is about Earth's Atmosphere. For other uses of the term Earth, please see Earth (disambiguation).
(PD) Photo: Courtesy of the Image Science & Analysis Laboratory, NASA Johnson Space Center
Atmospheric gases scatter blue light more than other wavelengths, giving the Earth a blue halo when seen from space at an altitude of 181 nautical miles (335 kilometres) above the Earth.

The Earth's atmosphere is an envelope of gas that surrounds the Earth and extends from the Earth's surface out thousands of kilometres, becoming increasingly thinner (less dense) with distance but always held in place by Earth's gravitational pull. The atmosphere contains the air we breathe and it holds clouds of moisture (water vapor) that become the water we drink. It protects us from meteors and harmful solar radiation and warms the Earth's surface by heat retention. In effect, the atmosphere is an envelope that protects all life on Earth.

The atmosphere is a mixture of gases we call "air". On a dry volume basis, it consists of about 78% nitrogen and 21% oxygen. The remainder of about 1% contains argon, carbon dioxide and very small amounts of other gases. The atmosphere is rarely, if ever, completely dry. Water vapor is almost always present up to about 4% of the total volume. In desert regions, when dry winds are blowing, water vapor in the air will be nearly zero. This climbs in other regions to about 3% on extremely hot and humid days. The upper limit, approaching 4%, is for tropical areas.

The atmosphere has a total mass of about 5 × 1015 metric tons[1] and about 80% of that mass is within about 12 kilometres (7.5 miles) from the Earth's surface.

There is no definite boundary between the atmosphere and outer space. It slowly becomes less dense (i.e., more empty) and fades into the void of outer space.

Structure of the atmosphere

(PD) Drawing: NOAA and NWS
Structure of the atmosphere.[2]

As shown in the adjacent diagram, Earth's atmosphere has five primary layers, referred to as spheres. From the lowest to the highest layer, they are the Troposphere, Stratosphere, Mesosphere, Thermosphere and the Exosphere. The four boundaries between the primary layers, referred to as pauses, are the Tropopause, Stratopause, Mesopause and the Thermopause. In more detail:[2]

Troposphere
From the Greek word "τρέπω" meaning to turn or change. The troposphere is the lowest layer of the atmosphere and extends from the Earth's surface to about 7 kilometres (4 miles) high at the north and south poles and 17 kilometres (11 miles) high at the equator. This is where we live. As the density of the air in this layer decrease with height, the air temperature in the troposphere also decreases with height. The temperature drops from about 14 to 15 °C at the surface[3][4][5][6] to about -45 °C at the top of the troposphere. All of our weather occurs in the troposphere. The troposphere contains about 80% of the total mass of the atmosphere. In fact, 50% percent of the total mass of the atmosphere is located in the lowest 5 to 6 kilometres (3.1 to 3.7 miles) of the troposphere. The cruising altitude of commercial airliners is usually about 9 to 10 kilometres (5.6 to 6.2 miles) which is close to the top of the troposphere.
Atmospheric boundary layer
The lowest part of the troposphere is called the atmospheric boundary layer (ABL) or the planetary boundary layer and extends from the Earth's surface to about 1.5 to 2.0 km in height. The air temperature of the atmospheric boundary layer decreases with increasing altitude unless an inversion layer,[7][8] where the temperature increases with increasing altitude, is present. Above an inversion layer, the temperature decreases again. (See also Atmospheric lapse rate)
Tropopause
The boundary between the troposphere and the stratosphere. Together, the troposphere and the tropopause are known as the lower atmosphere.
Stratosphere
From the Latin word "stratus" meaning spreading out. The stratosphere extends from the tropopause's height of 7 to 17 kilometres (4 to 11 miles) to a height of about 50 kilometres (31 miles) and contains about 19% of the atmospheric gases. The stratosphere experiences increasing temperature and solar radiation with height. It contains the ozone layer because the solar radiation is increasingly absorbed by oxygen molecules in the stratosphere, leading to the formation of ozone. The ozone layer resides in the lower portion of the stratosphere, though the thickness of the layer varies seasonally and geographically. Weather balloons can rise to about 40 kilometres (25 miles) before the difference between the pressure inside the balloon and the outside atmospheric pressure causes the balloons to expand to the point at which they burst.
Stratopause
The boundary between the stratosphere and the mesosphere. The atmospheric pressure here is 1/1000th of the atmospheric pressure at sea level.
Mesosphere
From the Greek word "μέσος" meaning middle. The mesosphere extends from stratopause's height of about 50 kilometres (31 miles) to a height of about 80 to 85 kilometres (50 to 53 miles). The gases continue to become less and less dense with height. As such, the effect of the warming by ultraviolet radiation also becomes less and less, leading to a decrease in temperature with height. On average, temperature decreases to as low as -100 °C at the mesopause. However, the gases in the mesosphere are still dense enough to slow down meteors hurtling into the atmosphere, where they burn up and leave fiery trails in the night sky.
Mesopause
The boundary between the mesosphere and the thermosphere. It is the coldest place on Earth, with a temperature as low as -120 °C at times.
Thermosphere
The thermosphere extends from the mesopause's height of 80 to 85 kilometres (50 to 53 miles) to a height of between 500 and 1000 kilometres (310 and 620 miles) and is referred to as the upper atmosphere. The gases of the thermosphere are increasingly less dense than in the mesosphere. As such, incoming high energy ultraviolet and x-ray radiation from the sun, absorbed by the molecules in this layer, results in the temperature increasing to as high as 2000 °C near the top of this layer. However, despite the high temperature, this layer of the atmosphere would still feel very cold to our skin because of the extremely low density of the air. The total amount of energy from the very few molecules in this layer is not enough to heat our skin. The International Space Station orbits in this layer, between 320 and 380 kilometers (200 and 235 miles) from the Earth's surface. The Kármán line, named after the physicist Theodore von Kármán, is in the thermosphere at an altitude of 100 kilometres (62 miles) above the Earth and is often referred to as the boundary between Earth's atmosphere and outer space.[9]
(PD) Diagram: NOAA and NWS
Temperature versus altitude within the Earth's atmosphere.[2]
Thermopause
The boundary between the thermosphere and the exosphere.
Exosphere
Extends from the thermopause's height of 500 to 1000 kilometres (310 to 620 miles) up to a height of 10,000 kilometres (6,200 miles) above the Earth's surface. The exosphere is the outermost layer of the atmosphere and it is in this layer that our man-made satellites orbit the Earth. The density of the exosphere is so low that particles within it (atoms, molecules, or ions) do not collide. As a result, particles in the exosphere can escape altogether from Earth's atmosphere into the void of space.

There are two other regions of the atmosphere that deserve discussion, one is the Ionosphere and the other is the Ozone layer:

Ionosphere
Solar radiation causes ionization of the molecules in a region of the atmosphere that extends from about 50 kilometers up to about 1100 kilometers above the Earth. That region is called the ionosphere and most of it is in the thermosphere, although it overlaps into the exosphere above the thermosphere and the mesosphere below the thermosphere. It is of importance because certain regions of the ionosphere make long distance radio communication possible by reflecting the radio waves back to Earth. It is also home to auroras. The lower edge of auroras occur at an altitude of about 100 kilometres (about the same height as the Kármán line) and may extend up to an altitude of 480 kilometres.[10]
Ozone Layer
Though part of the stratosphere, the physical and chemical composition of the ozone layer is far different from that of the stratosphere. Ozone (O3) in the Earth's stratosphere is created by ultraviolet light striking oxygen molecules containing two oxygen atoms (O2), splitting them into individual oxygen atoms (atomic oxygen). The atomic oxygen then combines with unbroken O2 to create O3, the ozone. Ozone is unstable (although long-lived in the stratosphere) and when ultraviolet light hits ozone, it splits into a molecule of O2 and an atom of atomic oxygen thus creating a continuing process called the ozone-oxygen cycle. This occurs in the ozone layer, the region from about 10 to 50 kilometres (6 to 31 miles) above Earth's surface. About 90% of the ozone in the Earth's atmosphere is contained in the stratosphere. Ozone concentrations are greatest between the heights of about 20 and 40 kilometres above the Earth's surface, where they range from about 2 to 8 parts per million by volume.

Sometimes the Earth's atmosphere is defined as consisting of these two parts:[11][12]

Homosphere
Defined as that part of the atmosphere where the chemical composition of the atmosphere is constant. The homosphere extends from the Earth's surface to about 80 kilometres (50 miles) and includes the troposphere, the mesosphere and the stratosphere.
Heterosphere
Defined as that part of the atmosphere above 80 kilometres in which the component gases are stratified, with concentrations of the heavier gases decreasing more rapidly with altitude than concentrations of the lighter gases. It includes the thermosphere and the exosphere.
Base Values
Region
Number
Altitude Range
(m)

(Pa)

(K)

(K/m)

(m)
1 0.00 to 10,999 101,325 288.15 -0.0065 0.00
2 11,000 to 19,999 22,632 216.65 0.00 11,000
3 20,000 to 31,999 5,474 216.65 0.001 20,000
4 32,000 to 46,999 868 228.65 0.0028 32,000
5 47,000 to 50,999 110 270.65 0.00 47,000
6 51,000 to 70,999 66 270.65 -0.0028 51,000
7 71,000 to 85,000 4 214.65 -0.002 71,000

Pressure profile of the atmosphere

For more information, see: Atmospheric pressure.

Earth's atmospheric pressure at sea level is commonly taken to be 101,325 pascals and it decreases with increasing altitude. There are two equations for calculating the atmospheric pressure at any given altitude up to 86 kilometres (53 miles). Equation 1 is used when the lapse rate[13] is not equal to zero and equation 2 is used when the lapse rate equals zero:[14] The two equations are valid for seven different altitude regions of the Earth's atmosphere by using the designated base values (from the adjacent table) for , , and for each of the seven regions:[14][15]

Equation 1:
Equation 2:
where:
= Pressure at any given altitude , Pa
= Base pressure, Pa
= Base temperature, K
= Base lapse rate, K/m
= Base height (i.e., altitude), m
= Any given altitude, m
= Gravitational acceleration = 9.8067 m/s2
= Molecular weight of air = 0.028964 kg/mol
= Universal gas constant = 8.3144 J/(K mol)

For example, the atmospheric pressure at an altitude of 10,000 metres is obtained as 26,437 pascals by using Equation 1 and the appropriate base values for the altitude region number 1.

Composition of Dry Air [16]
Gas Concentration
Name Symbol Volume % ppmv
Nitrogen N2 78.084 780,840
Oxygen O2 20.947 209,470
Argon Ar 0.934 9,340
Carbon dioxide CO2 0.033 330
Neon Ne 0.001820 18.20
Helium He 0.000520 5.20
Methane CH4 0.000200 2.00
Krypton Kr 0.000110 1.10
Sulfur dioxide SO2 0.000100 1.00
Hydrogen H2 0.000050 0.50
Nitrous oxide N2O 0.000050 0.50
Xenon Xe 0.000009 0.09
Ozone O3 0.000007 0.07
Nitrogen dioxide NO2 0.000002 0.02
Notes:

-- ppmv = parts per million parts by volume
-- The amount of water vapor varies up to a maximum of
4 volume percent.
-- The total volume percent of the listed gases does not equal
exactly 100 percent because of rounding of the numbers.

Composition of the atmospheric air

For more information, see: Atmospheric chemistry.

The adjacent table lists the concentration of 14 gases present in filtered dry air. Two of the gases, nitrogen and oxygen make up 99.03 percent of the clean, dry air. The other listed gases total to 0.97 percent.

Note the amounts of greenhouse gases that are present: water vapor, carbon dioxide, methane, nitrous oxide, and ozone. Additional gases (not listed in the table) are also present in very minute amounts.

The atmospheric air is rarely, if ever, dry. Water vapor is nearly always present up to about 4% of the total volume. In the deserts regions, when dry winds are blowing, the water vapor content will be near zero. This climbs to near 3% on extremely hot/humid days. The upper limit of 4% is for tropical climates.

Unfiltered air contains minute amounts of various types of particulate matter derived from sources such as from dust, pollen and spores, sea spray, volcanoes, meteoroids and industrial activities.

Brief history of Earth's atmosphere

Earth was formed 4.54 billion years ago (within an uncertainty of 1%) with a primordial gaseous atmosphere surrounding a very dense, molten core.[17][18][19][20] About 4.4 billion year ago, as the Earth began to cool and form a crust, the primordial atmosphere was stripped away by a combination of heat from that molten crust, periods of intense solar activity, and the solar wind.

As the crust formed, volcanic activity became incessant. The outgassing from the volcanoes replaced the primordial atmosphere with what is referred to as the second atmosphere that most probably consisted of water vapor (steam), nitrogen, methane, ammonia, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfur dioxide, and other gases — a mixture much like that emitted from volcanoes today. The dominant gases of the secondary atmosphere were water vapor, carbon dioxide and nitrogen. There was very little free oxygen (if any) in that secondary atmosphere and it would have been poisonous for almost all modern life forms.

At about 4.0 billion years ago, cooling of the Earth and its atmosphere caused precipitation of the atmospheric water vapor as rainfall and subsequently the development of the Earth's oceans. Most of the atmospheric carbon dioxide was dissolved in the oceans and then precipitated out as solid carbonates. By about 3.5 billion years ago, life emerged in the oceans in the form of single-celled microorganisms (referred to as archaea).

By about 2.7 billion year ago, the archaea were joined by microorganisms called cyanobacteria which were the first organisms to produce free gaseous oxygen. It took a long time for the cyanobacteria to get started but between 2.2 and 2.7 billion years ago, the Earth's atmosphere had been converted from an oxygen-lacking (anoxic) atmosphere to an oxygen-containing (oxic) atmosphere. This is often referred to as the Great Oxidation and it resulted in the mass extinction of any life forms that may have existed during the era of the anoxic atmosphere. Between then and now, the gaseous atmosphere was converted to its modern composition as presented and discussed in the previous section of this article.

The evolution of the Earth's modern oxygen-containing atmosphere (referred to as the third atmosphere) led to the formation of the ozone layer which protects life on earth by blocking the harmful incoming ultraviolet solar radiation.

References

  1. The Mass of the Atmosphere: A Constraint on Global Analysis K.E. Trenberth and Lesley Smith, National Center for Atmospheric Research, Boulder, Colorado
  2. 2.0 2.1 2.2 The Layers of the Atmosphere From the website of the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) The primary source for this section.
  3. Earth's Atmosphere
  4. NASA - Earth Fact Sheet
  5. Global Surface Temperature Anomalies
  6. Earth's Radiation Balance and Oceanic Heat Fluxes
  7. Turner, D.B. (1994). Workbook of Atmospheric Dispersion Estimates, 2nd Edition. CRC Press. ISBN 1-56670-023-X.  www.crcpress.com
  8. Beychok, Milton R. (2005). Fundamentals of Stack Gas Dispersion, 4th Edition. author-published. ISBN 0-9644588-0-2. 
  9. This definition is accepted by the Fédération Aéronautique Internationale (FAI), an international standard setting and record-keeping body for aeronautics and astronautics.
  10. Asahi Aurora Classroom Geophysical Institute, University of Alaska
  11. Climate Glossary From the website of Climate Program Office of the National Oceanic and Atmospheric Administration (NOAA).
  12. Ozone Depletion FAQ From the website of the Southern Region Headquarters of the National Weather Service (NWS).
  13. Very simply put, the lapse rate is the rate at which the atmospheric temperature changes with altitude. It is often expressed in K/m, K/km or °F/1000 ft.
  14. 14.0 14.1 U.S. Standard Atmosphere, 1976 Scroll to pdf page 28 of 241 pdf pages.
  15. Equation 2 can be obtained from the Boltzmann distribution.
  16. The Atmosphere From the website of the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS), Last updated May 5, 2009
  17. Note: 1 billion years ago is 109 years ago. It may be denoted as 1 Bya. It is also very often denoted as Gya or Ga, meaning giga years ago which is the SI equivalent and probably more commonly used worldwide.
  18. G.B. Dalrymple (1991). The Age of the Earth. Stanford University Press. ISBN 0-8047-1569-6. 
  19. G.B. Dalrymple (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Geological Society, London, Special Publications 190: 205-221.
  20. William L. Newman, (2007). Age of the Earth, Publications Services, U.S. Geological Survey (USGS)

(Read more...)

Previous Winners

Rules and Procedure

Rules

  • The primary criterion of eligibility for a new draft is that it must have been ranked as a status 1 or 2 (developed or developing), as documented in the History of the article's Metadate template, no more than one month before the date of the next selection (currently every Thursday).
  • Any Citizen may nominate a draft.
  • No Citizen may have nominated more than one article listed under "current nominees" at a time.
  • The article's nominator is indicated simply by the first name in the list of votes (see below).
  • At least for now--while the project is still small--you may nominate and vote for drafts of which you are a main author.
  • An article can be the New Draft of the Week only once. Nominated articles that have won this honor should be removed from the list and added to the list of previous winners.
  • Comments on nominations should be made on the article's talk page.
  • Any draft will be deleted when it is past its "last date eligible". Don't worry if this happens to your article; consider nominating it as the Article of the Week.
  • If an editor believes that a nominee in his or her area of expertise is ineligible (perhaps due to obvious and embarrassing problems) he or she may remove the draft from consideration. The editor must indicate the reasons why he has done so on the nominated article's talk page.

Nomination

See above section "Add New Nominees Here".

Voting

  • To vote, add your name and date in the Supporters column next to an article title, after other supporters for that article, by signing <br />~~~~. (The date is necessary so that we can determine when the last vote was added.) Your vote is alloted a score of 1.
  • Add your name in the Specialist supporters column only if you are an editor who is an expert about the topic in question. Your vote is alloted a score of 1 for articles that you created and 2 for articles that you did not create.
  • You may vote for as many articles as you wish, and each vote counts separately, but you can only nominate one at a time; see above. You could, theoretically, vote for every nominated article on the page, but this would be pointless.

Ranking

  • The list of articles is sorted by number of votes first, then alphabetically.
  • Admins should make sure that the votes are correctly tallied, but anyone may do this. Note that "Specialist Votes" are worth 3 points.

Updating

  • Each Thursday, one of the admins listed below should move the winning article to the Current Winner section of this page, announce the winner on Citizendium-L and update the "previous winning drafts" section accordingly.
  • The winning article will be the article at the top of the list (ie the one with the most votes).
  • In the event of two or more having the same number of votes :
    • The article with the most specialist supporters is used. Should this fail to produce a winner, the article appearing first by English alphabetical order is used.
    • The remaining winning articles are guaranteed this position in the following weeks, again in alphabetical order. No further voting should take place on these, which remain at the top of the table with notices to that effect. Further nominations and voting take place to determine future winning articles for the following weeks.
    • Winning articles may be named New Draft of the Week beyond their last eligible date if their circumstances are so described above.

Administrators

The Administrators of this program are the same as the admins for CZ:Article of the Week.

References

See Also


Citizendium Initiatives
Eduzendium | Featured Article | Recruitment | Subpages | Core Articles | Uncategorized pages |
Requested Articles | Feedback Requests | Wanted Articles
How to Edit
Getting Started Organization Technical Help
Policies Content Policy
Welcome Page