Deep vein thrombosis: Difference between revisions

From Citizendium
Jump to navigation Jump to search
(removing duplicate reference definitions)
mNo edit summary
Line 202: Line 202:


===Differential diagnosis===
===Differential diagnosis===
Rupture of the tendon of the [[plantaris muscle]] may mimic [[deep venous thrombosis]].<ref>{{Cite journal
Rupture of the tendon of the plantaris muscle<ref name=WPpm>Wikipedia has an [[Wikipedia:Plantaris muscle|article about the plantaris muscle.]]</ref>
may mimic [[deep venous thrombosis]].<ref>{{Cite journal
| doi = 10.1016/j.jemermed.2007.12.027
| doi = 10.1016/j.jemermed.2007.12.027
| last =  Lopez
| last =  Lopez

Revision as of 13:53, 21 October 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Deep vein thrombosis (DVT), also known as deep-venous thrombosis, is the formation of a blood clot ("thrombus") in a deep vein. It commonly affects the leg veins, such as the femoral vein or the popliteal vein or the deep veins of the pelvis. Occasionally the veins of the arm are affected (known as Paget-Schrötter disease). Embolism and thrombosis is the more general class of pathologies of this kind.

Thrombi may develop first in the calf veins (calf vein thrombosis), "growing" in the direction of flow of the vein. DVTs are distinguished as being above or below the trifucation of the popliteal vein. Very extensive DVTs can extend into the iliac veins or the inferior vena cava. The risk of pulmonary embolism is higher in the presence of more extensive clots.

Epidemiology

DVTs occur in about 1 per 1000 persons per year. About 1-5% will die from the complications (i.e. pulmonary embolism).

DVT is much less common in the pediatric population. About 1 in 100,000 people under the age of 18 experiences deep vein thrombosis, possibly due to a child's high rate of heartbeats per minute, relatively active lifestyle when compared with adults, and fewer comorbodities (e.g. malignancy).

Medical inpatients at risk of DVT can be identified with clinical prediction rules.[1][2]

Predicting which medical inpatients will develop DVT.[1][2]
  heading
RAM[1] prior VTE
order for bed rest
PICC insertion
cancer
Kucher score[2]

Cancer 3 points
Prior VTE 3
Hypercoagulability 3
Major surgery 2
Bed rest 1
Age >70 years 1
Obesity (BMI >30) 1
Estrogens 1

Cause/etiology

Virchow's triad

Many factors are involved in the formation of a thrombus (clot). Virchow's triad is a group of 3 factors known to affect clot formation: rate of flow, the consistency (thickness) of the blood, and qualities of the vessel wall. Among the risk factors are advanced age, obesity, infection, immobilization, female sex, use of oral contraceptives, tobacco usage and air travel ("economy class syndrome", a combination of immobility and relative dehydration) are some of the better-known causes.[3] Thrombophilia (tendency to develop thrombosis) often expresses itself with recurrent thromboses.

Underlying malignancy

DVT may be due to underlying malignancy, especially if the DVT is associated with older age, idiopathic DVT, bilateral thrombosis, or anemia.[4] These patients have a worse prognosis.

Genetics

A twin study found a genetic contribution to venous thromboembolism among men but not women.[5] Among men, the concordance rates for mono- and dizygotic twin pairs were 0.22 and 0.08.

Various single-nucleotide polymorphisms (SNPs) have been associated with DVT.[6]

Signs and symptoms

There may be no symptoms referrable to the location of the DVT, but the classical symptoms of DVT include pain, swelling and redness of the leg and dilatation of the surface veins. In up to 25% of all hospitalized patients, there may be some form of DVT, which often remains clinically inapparent (unless pulmonary embolism develops).

There are several techniques during physical examination to increase the detection of DVT, such as measuring the circumference of the affected and the contralateral limb at a fixed point (to objectivate edema), and palpating the venous tract, which is often tender. Physical examination is unreliable for excluding the diagnosis of deep vein thrombosis.

A careful history has to be taken considering risk factors (see below), including the use of estrogen-containing methods of hormonal contraception, recent long-haul flying, and a history of miscarriage (which is a feature of several disorders that can also cause thrombosis). A family history can reveal a hereditary factor in the development of DVT.

It is vital that the possibility of pulmonary embolism be included in the history, as this may warrant further investigation (see pulmonary embolism).

Complications As a complication, post-thrombotic syndrome can develop. Post-phlebitic syndrome occurs in 10% of patients with deep vein thrombosis (DVT). It presents with leg oedema, pain, nocturnal cramping, venous claudication, skin pigmentation, dermatitis and ulceration (usually on the medial aspect of the lower leg). In phlegmasia alba dolens, the leg is pale and cool with a diminished arterial pulse due to spasm. It usually results from acute occlusion of the iliac and femoral veins due to DVT. In phlegmasia cerulea dolens, there is an acute and nearly total venous occlusion of the entire extremity outflow, including the iliac and femoral veins. The leg is usually painful, cyanosed and oedematous. Venous gangrene may supervene.

Diagnosis

Homan's sign is used in clinical practice to diagnose DVT.

The gold standard is intravenous venography, which involves injecting a peripheral vein of the affected limb with a contrast agent and taking X-rays, to reveal whether the venous supply has been obstructed. Because of its invasiveness, this test is rarely performed.

Impedance plethysmography and Doppler ultrasonography are non-invasive alternatives.

Probability scoring for lower extremity DVT

Wells rule

The best studied clinical prediction rule is the Wells rule; however, use of the Wells rule is complicated by the rule having been modified over time. For example, in a recent review, the version of the Wells rule used in the articles was not clear although studies were published over a range of years.[7] This has resulted in guidelines recommending use of outdated versions of the Wells rule.[8] The rule was introduced in 1995.[9]

2003[10]-2006[11] Wells 10 point rule:
  1. Active cancer (treatment within last 6 months or palliative) -- 1 point
  2. Calf swelling >3cm compared to other calf (measured 10cm below tibial tuberosity) -- 1 point
  3. Collateral superficial veins (non-varicose) -- 1 point
  4. Pitting edema (confined to symptomatic leg) -- 1 point
  5. Swelling of entire leg - 1 point
  6. Localized pain along distribution of deep venous system -- 1 point
  7. Paralysis, paresis, or recent cast immobilization of lower extremities -- 1 point
  8. Recently bedridden > 3 days, or major surgery requiring regional or general anesthetic in past 12 weeks -- 1 point
  9. Previously documented DVT -- 1 point
  10. Alternative diagnosis at least as likely -- Subtract 2 points

Interpretation:

Score of 2 or higher - deep vein thrombosis is likely. Consider imaging the leg veins.
Score of less than 2 - deep vein thrombosis is unlikely. Consider blood test such as d-dimer test to further rule out deep vein thrombosis.

2003 Wells 10 point rule:In 2003, Wells published a 10 point rule that adds a point for history of previous DVT (yellow box).[10] In 2006, Wells reviewed the available clinical prediction rules for DVT and did not further modify the 2003 rule.[11]

Based on his 2003 study, Wells recommends that DVT is excluded only when the 10-point score is < 2 and the D-dimer is negative.[11] Independent studies validate the Wells 10 point rule.[12][13][7] However, the d-dimer assays vary; for rapid quantitative immunoturbidimetric assays, a cutoff of 1.0 <g/mL is used.[12]

Earlier version: 1995 Original Wells 12 point rule:[9]
Major points

  • Active cancer (treatment ongoing or within previous 6 months or palliative)
  • Paralysis, paresis. or recent plaster irnmobilisation of the lower extremities
  • Recently bedridden >3 days and/or major surgery within 4 weeks
  • Localised tenderness along tl’e distribution of the deep venous system
  • Thigh and calf swollen (should be measured)
  • Calf swelling 3cm >symptornless side (measured 10cm below tibial tuberosity
  • Strong family history of (NT (2 first degree relatives with history of CVI)

Minor points

  • History of recent trauma C 60 days) to the symptomatic leg
  • Pitting oedema; symptomatic leg only
  • Dilated superficial veins (non-varicose) in symptomatic leg only
  • Hospitisation within previous 6 months
  • Erythema

Earlier version: 1997 Wells 9 point rule:[14]

  1. Active cancer (treatment ongoing or within previous 6 months or palliative) - 1 point
  2. Paralysis, paresis, or recent plaster immobilisation of the lower extremities - 1 point
  3. Recently bedridden for more than 3 days or major surgery, within 4 weeks - 1 point
  4. Localised tenderness along the distribution of the deep venous system - 1 point
  5. Entire leg swollen - 1 point
  6. Calf swelling by more than 3 cm when compared with the asymptomatic leg (measured 10 cm below tibial tuberosity) - 1 point
  7. Pitting oedema (greater in the symptomatic leg) - 1 point
  8. Collateral superficial veins (non-varicose) - 1 point
  9. Alternative diagnosis as likely or greater than that of deep-vein thrombosis - subtract 2 points
Interpretation: low (score 0), medium (score of 1 or 2), or high (score 3)

In 2005 a large study found that the 1997 Wells score failed to adequately exclude DVT in primary care patients.[15] Unfortunately, the 2005 study was completed in March, 2003, 6 months prior to publication of the 2003 revision by Wells to his rule in which he added a 10th variable.

AMUSE Primary Care Rule

Because of concerns about the failed study in 2005 of the older, 9-point 1997 Wells rule (not that the current Wells rule has 10 points)[15], the Amsterdam Maastricht Utrecht Study on thromboEmbolism (AMUSE) Investigators developed a rule with 7 clinical variable plus the D-dimer.[16][17] Patients with a score of 3 or less are considered normal; patients with a score of 4 should receive ultrasonography.

  • Use of hormonal contraceptives
  • Active cancer in past 6 mo
  • Surgery in previous month
  • Absence of leg trauma
  • Distention of collateral leg veins
  • Difference in calf circumference ≥ 3 cm (2 points)
  • Abnormal d-dimer assay (6 points)

Patients with score ≥ 4 should receive ultrasonography of the leg.

The AMUSE investigators report that their rule and the Wells 10 variable rule perform similarly.[13] This rule has not been externally validated by independent research groups.

Probability scoring for upper extremity DVT

The Constans Clinical Decision Score may help. Its components are:[18]

  • Venous material present (Centeral venous catheter or pacemaker thread) (1 point)
  • Localized pain (1 point)
  • Unilateral edema (1 point)
  • Other diagnosis at least as plausible (-1 point)

A score of 1 or less, along with negative d-dimer, excluded DVT. Thus, the d-dimer should be checked on every patient suspected of upper extremity DVT.

Imaging the leg veins

Ultrasonography

Compression B-mode ultrasonography[19] scanning of the leg veins, combined with Duplex Doppler ultrasonography[20] (to determine blood flow), can reveal a thrombus.

Distinguishing acute versus chronic thrombosis with Duplex Doppler ultrasonography has been examined in one study of 103 examination in 101 patients:[21]

In this study "no results were false-positive for acute DVT due to the changes of chronic DVT."

Whole leg ultrasonography
Risk outcomes following a single negative whole-leg compression ultrasonography according to a systematic review.[22]
Wells score Death (%) from embolism and thrombosis (95% CI)
All patients 0.7%
Low risk 0.3% (0 to 0.7%)
Intermediate risk 0.8% (0 to 1.8%)
High risk 2.5% (0 to 7.1%)

Either whole leg Doppler ultrasonography or serial 2-point ultrasonography plus D-dimer are equivalent strategies according to a randomized controlled trial[23] that was included in the meta-analysis.

An uncontrolled cohort study found that anticoagulation can be safely withheld in patients with normal whole leg Doppler ultrasonography.[24]

Venography

Venography can determine acute versus chronic thrombosis:[21]

  • Acute thrombosis is suggested by any of:
    • "constant filling defect or thrombus was identified"
    • "persistent nonfilling of a venous segment despite adequate technique"
    • " abrupt termination of the opaque column of contrast material in a venous segment"
  • Chronic thrombosis is suggested by any of:
    • "irregular walls suggestive of retracted adherent thrombus"
    • "a lumen smaller than expected"
    • "numerous well-developed adjacent collateral veins"
    • "Valvular incompetence in the deep veins was considered further evidence of chronic DVT but was not required for the diagnosis."

Blood tests

In a low-probability situation, current practice is to commence investigations by testing for D-dimer levels. A low D dimer level should prompt other possible diagnoses (such as a ruptured Baker's cyst, if this has not been considered as part of the history).

  • D-dimer levels. This cross-linked fibrin degradation product is an indication that thrombosis is occurring, and that the blood clot is being dissolved by plasmin. Interpretation may be increased by using age adjusted levels:[25]
    • "In patients younger than 50 years, PE was excluded in those with a D-dimer value lower than 500 µg/L.{"
    • "In patients 50 years or older, the D-dimer test result was considered negative in those with a D-dimer value lower than their age multiplied by 10."

Other blood tests usually performed at this point are:

Differential diagnosis

Rupture of the tendon of the plantaris muscle[26]

may mimic deep venous thrombosis.[27]

Prophylaxis (Prevention)

General Medical Inpatients

Clinical practice guidelines state:

  • American College of Physicians (ACP) in 2011:[28][29]
    • "ACP recommends assessment of the risk for thromboembolism and bleeding in medical (including stroke) patients prior to initiation of prophylaxis of venous thromboembolism (Grade: strong recommendation, moderate-quality evidence)."
    • "ACP recommends pharmacologic prophylaxis with heparin or a related drug for venous thromboembolism in medical (including stroke) patients unless the assessed risk for bleeding outweighs the likely benefits (Grade: strong recommendation, moderate-quality evidence)."
    • "ACP recommends against the use of mechanical prophylaxis with graduated compression stockings for prevention of venous thromboembolism (Grade: strong recommendation, moderate-quality evidence)."
    • "ACP does not support the application of performance measures in medical (including stroke) patients that promotes universal venous thromboembolism prophylaxis regardless of risk."
  • American College of Chest Physicians (ACCP) in 2011:[30]
  • "For acutely ill hospitalized medical patients at increased risk of thrombosis, we recommend anticoagulant thromboprophylaxis with low-molecular-weight heparin (LMWH), low-dose unfractionated heparin (LDUH) bid, LDUH tid, or fondaparinux (Grade 1B) and suggest against extending the duration of thromboprophylaxis beyond the period of patient immobilization or acute hospital stay (Grade 2B).
  • "For acutely ill hospitalized medical patients at low risk of thrombosis, we recommend against the use of pharmacologic prophylaxis or mechanical prophylaxis (Grade 1B)."
  • "For acutely ill hospitalized medical patients at increased risk of thrombosis who are bleeding or are at high risk for major bleeding, we suggest mechanical thromboprophylaxis with graduated compression stockings (GCS) (Grade 2C) or intermittent pneumatic compression (IPC) (Grade 2C)."
  • "For critically ill patients, we suggest using LMWH or LDUH thromboprophylaxis (Grade 2C). For critically ill patients who are bleeding or are at high risk for major bleeding, we suggest mechanical thromboprophylaxis with GCS and/or IPC at least until the bleeding risk decreases (Grade 2C)."
  • "In outpatients with cancer who have no additional risk factors for VTE we suggest against routine prophylaxis with LMWH or LDUH (Grade 2B) and recommend against the prophylactic use of vitamin K antagonists (Grade 1B)."

Extending anticoagulation for an addition 28 days may benefit patients who are "women, patients older than 75 years, and those with level 1 mobility. Level I mobility is being bed rest or sedentary without bathroom privileges."[31]

Compression devices that are mobile may be effective.[32]

Rosuvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor (statin), may reduce embolism and thrombosis according to the Jupiter randomized controlled trial.[33]

Studies on implementing guidelines are available.[2][34]

Oncology patients

According to a clinical practice guideline by the American Society of Clinical Oncology, "all hospitalized cancer patients should be considered for VTE prophylaxis with anticoagulants in the absence of bleeding or other contraindications."[35]

For oncology patients who have had a thrombus, consider lifelong prophylaxis with enoxaparin 1.5 mg/kg per day.[36]

Surgery Patients

The risk of DVT after surgery may persist up to 12 weeks.[37]

Hip or knee surgery

Clinical practice guidelines by the American College of Chest Physicians[38] and the American Academy of Orthopaedic Surgeons[39] address prevention. Unfortunately, these guidelines have substantial conflict.[40]

Low molecular weight heparins may provide better anticoagulation for prophylaxis of deep venous thrombosis among orthopedic patients than direct thrombin inhibitors because the latter may increase complications.[41] However, if anticoagulation is started before surgery, direct thrombin inhibitors may be more effective.

Extending anticoagulation (25-35 days) with low molecular weight heparin, such as enoxaparin 30 to 40 mg subcutaneously once daily can reduce symptomatic DVT in one of every 45 patients treated and can reduce any (symptomatic or assymptomatic) DVT in one of every 8 patients treated.[42] As these studies were short term, it is likely that some patients with asymptomatic DVT progress to chronic venous insufficiency.

Even knee arthroscopic meniscectomy may benefit from low molecular weight heparin.[43]

Factor Xa inhibitors

Spinal surgery

Clinical practice guidelines by the American College of Chest Physicians address this topic.[48]

Travelers

Travel may[49] or may not[50] lead to DVT according to meta-analyses.

Trials suggests that wearing compression socks while traveling also reduces the incidence of thrombosis in people on long haul flights. A randomized study in 2001 compared two sets of long haul airline passengers, one set wore travel compression hosiery the others did not. The passengers were all scanned and blood tested to check for the incidence of DVT. The results showed that asymptomatic DVT occurred in 10% of the passengers who did not wear compression socks. The group wearing compression had no DVTs. The authors concluded that wearing elastic compression hosiery reduces the incidence of DVT in long haul airline passengers.[51].

Therapy

Treatment options have been reviewed.[52]

Regarding the duration of anticoagulation, see embolism and thrombosis: treatment.
  • Elastic compression stockings have been strongly encouraged.[56][58] The stockings in almost all trials were stronger than routine anti-embolism stockings and created either 20-30 mm Hg or 30-40 mm Hg. Most trials used knee-high stockings. A meta-analysis of randomized controlled trials by the Cochrane Collaboration showed reduced incidence of post-phlebitic syndrome.[59] The number needed to treat is quite potent at 4 to 5 patients need to prevent one case of post-phlebitic syndrome.[60] However, a more recent trial found that prophylactic use of compression stockings after deep venous thrombosis may not prevent venous insufficiency.[61]Compression stocking can cause local complications.[62]
  • Inferior vena cava filter also referred to as a Greenfield filter, reduces pulmonary embolism[63] and is an option for patients with an absolute contraindication to anticoagulant treatment (e.g., cerebral hemorrhage) or those rare patients who have objectively documented recurrent PEs while on anticoagulation. However these filters are themselves potential foci of thrombosis,[64] IVC filters are viewed as a temporizing measure for preventing life-threatening pulmonary embolism.
  • Hospitalization should be considered in patients with more than two of the following risk factors as these patients may have more risk of complications during treatment[65]:
    • bilateral DVT, renal insufficiency, body weight <70 kg, recent immobility, chronic heart failure, and cancer

Oncology patients

A clinical practice guideline published in 2004 by the American College of Chest Physicians states:[66]

"for patients with DVT and cancer, we recommend LMWH for the first 3 to 6 months of long-term anticoagulant therapy (Grade 1A). For these patients, we recommend anticoagulant therapy indefinitely or until the cancer is resolved".

A clinical practice guideline published in 2007 by the American Society of Clinical Oncology states:[35]

"1) low molecular weight heparin LMWH is the preferred approach for the initial 5 to 10 days of anticoagulant treatment of the cancer patient with established VTE, 2) LMWH given for at least 6 months is also the preferred approach for long-term anticoagulant therapy. Vitamin K antagonists with a targeted INR of 2 to 3 are acceptable for long-term therapy when LMWH is not available. 3) After 6 months, indefinite anticoagulant therapy should be considered for selected patients with active cancer, such as those with metastatic disease and those receiving chemotherapy. This recommendation is based on Panel consensus in the absence of clinical trials data."

Determining when to stop treatment

D-Dimer

An abnormal D-dimer level at the end of treatment might signal the need for continued anticoagulation with warfarin among patients with embolism and thrombosis such as a first unprovoked pulmonary embolism.[67] If the D-dimer is abnormal, anticoaguation should be continued, if the D-dimer is normal, the duration of treatment is uncertain.[68] In an observation study that collected the D-dimer before stopping anticoagulation, the D-dimer was not as predictive.[69]

Ultrasonography

Ultrasonography, using the following protocol may[70] or may not[71] help determine when to stop anticoaguation[70]:

"If veins had not recanalized, we invited patients to have further ultrasonography after 3 and 9 months in patients with secondary DVT and after 3, 9, 15, and 21 months in those with unprovoked DVT. Anticoagulation was discontinued when the veins had recanalized, along with further ultrasonography"

Prognosis

Reducing the risk of recurrence after an unprovoked deep venous thrombosis.[72] [73] [67] [74] [75]
  Treatment or test Risk if treated or test result is favorable Risk if not treated or test result is unfavorable Comments
Randomized controlled trial[72] Aspirin 100 mg daily for 2 years 6% per year 11.2% per year 0.5% major bleeding
Randomized controlled trial[73] Rivaroxaban for 6-12 months 1% over 6-12 months 7% over 6-12 months 0.7% major bleeding
Systematic review of a diagnostic test[67][75] Normal d-dimer 4% per year 9% per year
Systematic review of a diagnostic test[74] Recanalization of veins (no residual vein obstruction or RVO) Insignificant difference

Postthrombotic syndrome

Postthrombotic syndrome along with postphlebitic syndrome are forms of venous insufficiency. Postthrombotic syndrome is a "condition caused by one or more episodes of deep vein thrombosis, usually the blot clots are lodged in the legs. Clinical features include edema; pain; aching; heaviness; and muscle cramp in the leg. When severe leg swelling leads to skin breakdown, it is called venous stasis ulcer."[76][77]

The incidence of postthrombotic syndrome is 76.1 per 100,000 person-years.[78] Regarding the etiology of the postthrombotic syndrome, about 40% are from prior DVT[79] although only 25% of patients report a prior diagnosis of DVT[78]. This suggests nearly half of the prior DVTs were undiagnosed.

Natural history of a diagnosed DVT

The natural history of a diagnosed DVT is as follows. After two years, the probability of postthrombotic syndrome is:[80]

  • No postthrombotic syndrome 60%
  • Mild postthrombotic syndrome 26%
  • Moderate postthrombotic syndrome 11%
  • Severe postthrombotic syndrome 3%

Risk factors include:

  • Prior ipsilateral DVT
  • Obesity
  • Female gender
  • Older age

After 5 to 10 years: One cohort reported 28% incidence (using a definition that required more significant symptoms)at five years.[81]

Among patients 6 to 8 years after a DVT, two studies provide risks:

  • "42% reported pain, swelling, or discoloration."[82]
  • A second study found 70% risk at 8 years.[64]

After 10 to 20 years: Although after 20 years, only 26.8% of patients will have sought medical care and be diagnosed with late complications of DVT[83], when patients are actively studied 10-20 years after their initial thrombosis, 80% have some signs of postthrombotic syndrome.[84]

Recurrent DVT

Risk factors for recurrence if anticoagulation is stopped are:[85]

  • post-thrombotic symptoms such as "hyperpigmentation, edema or redness of either leg"
  • D-dimer > or = 250 microg/L while taking warfarin> Other studies suggest the D-dimer should be checked after stopping warfarin.
  • body mass index > or = 30 kg/m(2)
  • age > or = 65 years
  • male gender

References

  1. 1.0 1.1 1.2 Woller SC, Stevens SM, Jones JP, Lloyd JF, Evans RS, Aston VT et al. (2011). "Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients.". Am J Med 124 (10): 947-954.e2. DOI:10.1016/j.amjmed.2011.06.004. PMID 21962315. Research Blogging.
  2. 2.0 2.1 2.2 2.3 Kucher N, Koo S, Quiroz R, Cooper JM, Paterno MD, Soukonnikov B et al. (2005). "Electronic alerts to prevent venous thromboembolism among hospitalized patients.". N Engl J Med 352 (10): 969-77. DOI:10.1056/NEJMoa041533. PMID 15758007. Research Blogging.
  3. Tsai A, Cushman M, Rosamond W, Heckbert S, Polak J, Folsom A (2002). "Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology.". Arch Intern Med 162 (10): 1182-9. PMID 12020191.
  4. Trujillo-Santos J, Prandoni P, Rivron-Guillot K, et al (2008). "Clinical outcome in patients with venous thromboembolism and hidden cancer: findings from the RIETE Registry". J Thromb Haemost 6 (2): 251–255. DOI:10.1111/j.1538-7836.2007.02837.x. PMID 18021305. Research Blogging.
  5. Larsen TB, Sørensen HT, Skytthe A, Johnsen SP, Vaupel JW, Christensen K (2003). "Major genetic susceptibility for venous thromboembolism in men: a study of Danish twins". Epidemiology 14 (3): 328-32. PMID 12859034[e]
  6. Bezemer, I. D., Bare, L. A., Doggen, C. J. M., Arellano, A. R., Tong, C., Rowland, C. M., et al. (2008). Gene variants associated with deep vein thrombosis, JAMA, 299(11), 1306-1314. DOI:10.1001/jama.299.11.1306.
  7. 7.0 7.1 Geersing GJ, Zuithoff NP, Kearon C, Anderson DR, Ten Cate-Hoek AJ, Elf JL et al. (2014). "Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis.". BMJ 348: g1340. DOI:10.1136/bmj.g1340. PMID 24615063. PMC PMC3948465. Research Blogging.
  8. Qaseem A, Snow V, Barry P, et al (2007). "Current diagnosis of venous thromboembolism in primary care: a clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians". Ann. Intern. Med. 146 (6): 454–8. PMID 17371890[e]
  9. 9.0 9.1 Wells PS, Hirsh J, Anderson DR, et al (1995). "Accuracy of clinical assessment of deep-vein thrombosis". Lancet 345 (8961): 1326–30. PMID 7752753[e]
  10. 10.0 10.1 Wells PS, Anderson DR, Rodger M, et al (2003). "Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis". N. Engl. J. Med. 349 (13): 1227–35. DOI:10.1056/NEJMoa023153. PMID 14507948. Research Blogging.
  11. 11.0 11.1 11.2 Scarvelis D, Wells PS (2006). "Diagnosis and treatment of deep-vein thrombosis". CMAJ 175 (9): 1087–92. DOI:10.1503/cmaj.060366. PMID 17060659. Research Blogging.
  12. 12.0 12.1 Linkins LA, Bates SM, Lang E, Kahn SR, Douketis JD, Julian J et al. (2013). "Selective d-Dimer Testing for Diagnosis of a First Suspected Episode of Deep Venous Thrombosis: A Randomized Trial.". Ann Intern Med 158 (2): 93-100. DOI:10.7326/0003-4819-158-2-201301150-00003. PMID 23318311. Research Blogging.
  13. 13.0 13.1 van der Velde EF, Toll DB, Ten Cate-Hoek AJ, Oudega R, Stoffers HE, Bossuyt PM et al. (2011). "Comparing the diagnostic performance of 2 clinical decision rules to rule out deep vein thrombosis in primary care patients.". Ann Fam Med 9 (1): 31-6. DOI:10.1370/afm.1198. PMID 21242558. Research Blogging.
  14. Wells PS, Anderson DR, Bormanis J, et al (1997). "Value of assessment of pretest probability of deep-vein thrombosis in clinical management". Lancet 350 (9094): 1795–8. DOI:10.1016/S0140-6736(97)08140-3. PMID 9428249. Research Blogging.
  15. 15.0 15.1 Oudega R, Hoes AW, Moons KG (2005). "The Wells rule does not adequately rule out deep venous thrombosis in primary care patients". Ann. Intern. Med. 143 (2): 100–7. PMID 16027451[e]
  16. Toll, DB et al. 2008. “A new diagnostic rule for deep vein thrombosis: safety and efficiency in clinically relevant subgroups.” Fam. Pract. 2008. http://fampra.oxfordjournals.org/cgi/content/full/cmm075v1
  17. Büller HR, Ten Cate-Hoek AJ, Hoes AW, et al (February 2009). "Safely ruling out deep venous thrombosis in primary care". Ann. Intern. Med. 150 (4): 229–35. PMID 19221374[e]
  18. Kleinjan A, Di Nisio M, Beyer-Westendorf J, Camporese G, Cosmi B, Ghirarduzzi A et al. (2014). "Safety and Feasibility of a Diagnostic Algorithm Combining Clinical Probability, d-Dimer Testing, and Ultrasonography for Suspected Upper Extremity Deep Venous Thrombosis: A Prospective Management Study.". Ann Intern Med 160 (7): 451-7. DOI:10.7326/M13-2056. PMID 24687068. Research Blogging.
  19. Lensing AW, Prandoni P, Brandjes D, Huisman PM, Vigo M, Tomasella G et al. (1989). "Detection of deep-vein thrombosis by real-time B-mode ultrasonography.". N Engl J Med 320 (6): 342-5. PMID 2643771.
  20. White RH, McGahan JP, Daschbach MM, Hartling RP (1989). "Diagnosis of deep-vein thrombosis using duplex ultrasound.". Ann Intern Med 111 (4): 297-304. PMID 2667418.
  21. 21.0 21.1 Lewis BD, James EM, Welch TJ, Joyce JW, Hallett JW, Weaver AL (1994). "Diagnosis of acute deep venous thrombosis of the lower extremities: prospective evaluation of color Doppler flow imaging versus venography.". Radiology 192 (3): 651-5. PMID 8058929.
  22. Johnson SA, Stevens SM, Woller SC, Lake E, Donadini M, Cheng J et al. (2010). "Risk of deep vein thrombosis following a single negative whole-leg compression ultrasound: a systematic review and meta-analysis.". JAMA 303 (5): 438-45. DOI:10.1001/jama.2010.43. PMID 20124539. Research Blogging.
  23. Bernardi E, Camporese G, Büller HR, et al (October 2008). "Serial 2-point ultrasonography plus D-dimer vs whole-leg color-coded Doppler ultrasonography for diagnosing suspected symptomatic deep vein thrombosis: a randomized controlled trial". JAMA : the journal of the American Medical Association 300 (14): 1653–9. DOI:10.1001/jama.300.14.1653. PMID 18840838. Research Blogging.
  24. Stevens SM, Elliott CG, Chan KJ, Egger MJ, Ahmed KM (2004). "Withholding anticoagulation after a negative result on duplex ultrasonography for suspected symptomatic deep venous thrombosis.". Ann Intern Med 140 (12): 985-91. PMID 15197015.
  25. Righini M, Van Es J, Den Exter PL, Roy PM, Verschuren F, Ghuysen A et al. (2014). "Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study.". JAMA 311 (11): 1117-24. DOI:10.1001/jama.2014.2135. PMID 24643601. Research Blogging.
  26. Wikipedia has an article about the plantaris muscle.
  27. Lopez, Gregory J; Hoffman RS, Davenport M. "Plantaris rupture: A mimic of deep venous thrombosis". Journal of Emergency Medicine. DOI:10.1016/j.jemermed.2007.12.027. Retrieved on 2009-01-16. Research Blogging.
  28. Qaseem, Amir; Roger Chou, Linda L. Humphrey, Melissa Starkey, Paul Shekelle (2011-11-01). "Venous Thromboembolism Prophylaxis in Hospitalized Patients: A Clinical Practice Guideline From the American College of Physicians". Annals of Internal Medicine 155 (9): 625 -632. DOI:10.1059/0003-4819-155-9-201111010-00011. Retrieved on 2011-11-01. Research Blogging.
  29. Lederle, Frank A.; Dylan Zylla, Roderick MacDonald, Timothy J. Wilt (2011-11-01). "Venous Thromboembolism Prophylaxis in Hospitalized Medical Patients and Those With Stroke: A Background Review for an American College of Physicians Clinical Practice Guideline". Annals of Internal Medicine 155 (9): 602 -615. DOI:10.1059/0003-4819-155-9-201111010-00008. Retrieved on 2011-11-01. Research Blogging.
  30. Kahn SR, Lim W, Dunn AS, Cushman M, Dentali F, Akl EA et al. (2012). "Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.". Chest 141 (2 Suppl): e195S-226S. DOI:10.1378/chest.11-2296. PMID 22315261. PMC PMC3278052. Research Blogging.
  31. Hull RD, Schellong SM, Tapson VF, Monreal M, Samama MM, Nicol P et al. (2010). "Extended-duration venous thromboembolism prophylaxis in acutely ill medical patients with recently reduced mobility: a randomized trial.". Ann Intern Med 153 (1): 8-18. DOI:10.1059/0003-4819-153-1-201007060-00004. PMID 20621900. Research Blogging.
  32. Colwell CW, Froimson MI, Mont MA, Ritter MA, Trousdale RT, Buehler KC et al. (2010). "Thrombosis prevention after total hip arthroplasty: a prospective, randomized trial comparing a mobile compression device with low-molecular-weight heparin.". J Bone Joint Surg Am 92 (3): 527-35. DOI:10.2106/JBJS.I.00047. PMID 20194309. Research Blogging.
  33. Glynn RJ, Danielson E, Fonseca FA, et al (March 2009). "A Randomized Trial of Rosuvastatin in the Prevention of Venous Thromboembolism". N. Engl. J. Med.. DOI:10.1056/NEJMoa0900241. PMID 19329822. Research Blogging.
  34. Khanna R, Vittinghoff E, Maselli J, Auerbach A (2012). "Unintended consequences of a standard admission order set on venous thromboembolism prophylaxis and patient outcomes.". J Gen Intern Med 27 (3): 318-24. DOI:10.1007/s11606-011-1871-x. PMID 21948203. PMC PMC3286563. Research Blogging.
  35. 35.0 35.1 Lyman GH, Khorana AA, Falanga A, et al (2007). "American Society of Clinical Oncology Guideline: Recommendations for Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer". DOI:10.1200/JCO.2007.14.1283. PMID 17968019. Research Blogging.
  36. Akl EA, Barba M, Rohilla S, et al (2008). "Anticoagulation for the long term treatment of venous thromboembolism in patients with cancer". Cochrane Database Syst Rev (2): CD006650. DOI:10.1002/14651858.CD006650.pub2. PMID 18425959. Research Blogging.
  37. Sweetland S, Green J, Liu B, Berrington de González A, Canonico M, Reeves G et al. (2009). "Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort study.". BMJ 339: b4583. DOI:10.1136/bmj.b4583. PMID 19959589. Research Blogging.
  38. Falck-Ytter Y, Francis CW, Johanson NA, Curley C, Dahl OE, Schulman S et al. (2012). "Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.". Chest 141 (2 Suppl): e278S-325S. DOI:10.1378/chest.11-2404. PMID 22315265. PMC PMC3278063. Research Blogging.
  39. (2007) American Academy of Orthopaedic Surgeons Clinical Guideline on Prevention of Pulmonary Embolism in Patients Undergoing Total Hip or Knee Arthroplasty Summary at the National Guidelines Clearinghouse
  40. Eikelboom JW, Karthikeyan G, Fagel N, Hirsh J (2009). "American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ: what are the implications for clinicians and patients?". Chest 135 (2): 513-20. DOI:10.1378/chest.08-2655. PMID 19201714. Research Blogging.
  41. Salazar CA, Malaga G, Malasquez G (2010). "Direct thrombin inhibitors versus vitamin K antagonists or low molecular weight heparins for prevention of venous thromboembolism following total hip or knee replacement.". Cochrane Database Syst Rev 4: CD005981. DOI:10.1002/14651858.CD005981.pub2. PMID 20393944. Research Blogging.
  42. Hull RD, Pineo GF, Stein PD, et al (November 2001). "Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep venous thrombosis in patients after elective hip arthroplasty: a systematic review". Annals of internal medicine 135 (10): 858–69. PMID 11712876[e]
  43. Camporese G, Bernardi E, Prandoni P, Noventa F, Verlato F, Simioni P et al. (2008). "Low-molecular-weight heparin versus compression stockings for thromboprophylaxis after knee arthroscopy: a randomized trial.". Ann Intern Med 149 (2): 73-82. PMID 18626046. Review in: ACP J Club. 2008 Dec 16;149(6):10
  44. Eriksson BI, Bauer KA, Lassen MR, Turpie AG (November 2001). "Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after hip-fracture surgery". The New England journal of medicine 345 (18): 1298–304. PMID 11794148[e]
  45. Lassen MR, Ageno W, Borris LC, et al (June 2008). "Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty". The New England journal of medicine 358 (26): 2776–86. DOI:10.1056/NEJMoa076016. PMID 18579812. Research Blogging.
  46. Eriksson BI, Borris LC, Friedman RJ, et al (June 2008). "Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty". The New England journal of medicine 358 (26): 2765–75. DOI:10.1056/NEJMoa0800374. PMID 18579811. Research Blogging.
  47. Kakkar AK, Brenner B, Dahl OE, et al (July 2008). "Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial". Lancet 372 (9632): 31–9. DOI:10.1016/S0140-6736(08)60880-6. PMID 18582928. Research Blogging. (this trial compared rivaroxaban to short-term enoxaparin
  48. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA et al. (2012). "Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.". Chest 141 (2 Suppl): e227S-77S. DOI:10.1378/chest.11-2297. PMID 22315263. PMC PMC3278061. Research Blogging.
  49. Chandra D, Parisini E, Mozaffarian D (2009). "Meta-analysis: travel and risk for venous thromboembolism.". Ann Intern Med 151 (3): 180-90. PMID 19581633.
  50. Beam DM, Courtney DM, Kabrhel C, Moore CL, Richman PB, Kline JA (2009). "Risk of thromboembolism varies, depending on category of immobility in outpatients.". Ann Emerg Med 54 (2): 147-52. DOI:10.1016/j.annemergmed.2008.10.033. PMID 19135280. Research Blogging.
  51. Scurr JH, Machin SJ, Bailey-King S, Mackie IJ, McDonald S, Smith PD (2001). "Frequency and prevention of symptomless deep-vein thrombosis in long-haul flights: a randomised trial.". Lancet 357 (9267): 1485-9. DOI:10.1016/S0140-6736(00)04645-6. PMID 11377600. Research Blogging.
  52. Bates SM, Ginsberg JS (July 2004). "Clinical practice. Treatment of deep-vein thrombosis". N. Engl. J. Med. 351 (3): 268–77. DOI:10.1056/NEJMcp031676. PMID 15254285. Research Blogging.
  53. Watson L, Armon M. "Thrombolysis for acute deep vein thrombosis". Cochrane Database Syst Rev: CD002783. PMID 15495034.
  54. Enden, Tone; Ylva Haig, Nils-Einar Kløw, Carl-Erik Slagsvold, Leiv Sandvik, Waleed Ghanima, Geir Hafsahl, Pål Andre Holme, Lars Olaf Holmen, Anne Mette Njaastad, Gunnar Sandbæk, Per Morten Sandset (2011-12). "Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial". The Lancet. DOI:10.1016/S0140-6736(11)61753-4. ISSN 01406736. Retrieved on 2011-12-15. Research Blogging.
  55. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ et al. (2011). "Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension: A Scientific Statement From the American Heart Association.". Circulation. DOI:10.1161/CIR.0b013e318214914f. PMID 21422387. Research Blogging.
  56. 56.0 56.1 Snow V et al (2007). "Management of Venous Thromboembolism: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians". Ann Intern Med 146 (3).
  57. Buller HR, Lensing AW, Prins MH, et al (September 2008). "A dose-ranging study evaluating once-daily oral administration of the factor Xa inhibitor rivaroxaban in the treatment of patients with acute symptomatic deep vein thrombosis: the Einstein-DVT Dose-Ranging Study". Blood 112 (6): 2242–7. DOI:10.1182/blood-2008-05-160143. PMID 18621928. Research Blogging.
  58. Musani MH, Matta F, Yaekoub AY, Liang J, Hull RD, Stein PD (2010). "Venous compression for prevention of postthrombotic syndrome: a meta-analysis.". Am J Med 123 (8): 735-40. DOI:10.1016/j.amjmed.2010.01.027. PMID 20670728. Research Blogging.
  59. Kolbach D, Sandbrink M, Hamulyak K, Neumann H, Prins M (2004). "Non-pharmaceutical measures for prevention of post-thrombotic syndrome". Cochrane Database Syst Rev: CD004174. DOI:10.1002/14651858.CD004174.pub2. PMID 14974060. Research Blogging.
  60. Kakkos S, Daskalopoulou S, Daskalopoulos M, Nicolaides A, Geroulakos G (2006). "Review on the value of graduated elastic compression stockings after deep vein thrombosis". Thromb Haemost 96 (4): 441-5. PMID 17003920.
  61. Kahn SR, Shapiro S, Wells PS, Rodger MA, Kovacs MJ, Anderson DR et al. (2013). "Compression stockings to prevent post-thrombotic syndrome: a randomised placebo-controlled trial.". Lancet. DOI:10.1016/S0140-6736(13)61902-9. PMID 24315521. Research Blogging.
  62. CLOTS Trials Collaboration. Dennis M, Sandercock PA, Reid J, Graham C, Murray G et al. (2009). "Effectiveness of thigh-length graduated compression stockings to reduce the risk of deep vein thrombosis after stroke (CLOTS trial 1): a multicentre, randomised controlled trial.". Lancet 373 (9679): 1958-65. DOI:10.1016/S0140-6736(09)60941-7. PMID 19477503. PMC PMC2692021. Research Blogging. Review in: Ann Intern Med. 2009 Oct 20;151(8):JC4-9
  63. Decousus H, Leizorovicz A, Parent F, Page Y, Tardy B, Girard P, Laporte S, Faivre R, Charbonnier B, Barral F, Huet Y, Simonneau G (1998). "A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. Prévention du Risque d'Embolie Pulmonaire par Interruption Cave Study Group". N Engl J Med 338 (7): 409-15. PMID 9459643.
  64. 64.0 64.1 PREPIC Study Group (2005). "Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study.". Circulation 112 (3): 416-22. DOI:10.1161/CIRCULATIONAHA.104.512834. PMID 16009794. Research Blogging. Review in: ACP J Club. 2006 Jan-Feb;144(1):18
  65. Trujillo-Santos J, Herrera S, Page MA, et al (2006). "Predicting adverse outcome in outpatients with acute deep vein thrombosis. findings from the RIETE Registry". J. Vasc. Surg. 44 (4): 789-93. DOI:10.1016/j.jvs.2006.06.032. PMID 16926081. Research Blogging.
  66. Büller HR, Agnelli G, Hull RD, Hyers TM, Prins MH, Raskob GE (2004). "Antithrombotic therapy for venous thromboembolic disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy". Chest 126 (3 Suppl): 401S–428S. DOI:10.1378/chest.126.3_suppl.401S. PMID 15383479. Research Blogging.
  67. 67.0 67.1 67.2 Douketis J, Tosetto A, Marcucci M, Baglin T, Cushman M, Eichinger S et al. (2010). "Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of D-dimer testing to assess recurrence risk after unprovoked venous thromboembolism.". Ann Intern Med 153 (8): 523-31. DOI:10.1059/0003-4819-153-8-201010190-00009. PMID 20956709. Research Blogging.
  68. Palareti G, Cosmi B, Legnani C, et al (2006). "D-dimer testing to determine the duration of anticoagulation therapy". N. Engl. J. Med. 355 (17): 1780-9. DOI:10.1056/NEJMoa054444. PMID 17065639. Research Blogging.
  69. Rodger MA, Kahn SR, Wells PS, Anderson DA, Chagnon I, Le Gal G, et al. [Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy http://www.cmaj.ca/cgi/content/full/179/5/417]. CMAJ. 2008 Aug 26;179(5):417-426.
  70. 70.0 70.1 Prandoni, Paolo; Martin H. Prins, Anthonie W.A. Lensing, Angelo Ghirarduzzi, Walter Ageno, Davide Imberti, Gianluigi Scannapieco, Giovanni B. Ambrosio, Raffaele Pesavento, Stefano Cuppini, Roberto Quintavalla, Giancarlo Agnelli, for the AESOPUS Investigators (2009-05-05). "Residual Thrombosis on Ultrasonography to Guide the Duration of Anticoagulation in Patients With Deep Venous Thrombosis: A Randomized Trial". Ann Intern Med 150 (9): 577-585. PMID 19414836. Retrieved on 2009-05-06.
  71. Robinson KS, Anderson DR, Gross M, et al. (September 1997). "Ultrasonographic screening before hospital discharge for deep venous thrombosis after arthroplasty: the post-arthroplasty screening study. A randomized, controlled trial". Ann. Intern. Med. 127 (6): 439–45. PMID 9313000[e]
  72. 72.0 72.1 Becattini C, Agnelli G, Schenone A, Eichinger S, Bucherini E, Silingardi M et al. (2012). "Aspirin for preventing the recurrence of venous thromboembolism.". N Engl J Med 366 (21): 1959-67. DOI:10.1056/NEJMoa1114238. PMID 22621626. Research Blogging.
  73. 73.0 73.1 EINSTEIN Investigators. Bauersachs R, Berkowitz SD, Brenner B, Buller HR, Decousus H et al. (2010). "Oral rivaroxaban for symptomatic venous thromboembolism.". N Engl J Med 363 (26): 2499-510. DOI:10.1056/NEJMoa1007903. PMID 21128814. Research Blogging. Review in: Evid Based Med. 2011 Oct;16(5):139-40
  74. 74.0 74.1 Carrier M, Rodger MA, Wells PS, Righini M, LE Gal G (2011). "Residual vein obstruction to predict the risk of recurrent venous thromboembolism in patients with deep vein thrombosis: a systematic review and meta-analysis.". J Thromb Haemost 9 (6): 1119-25. DOI:10.1111/j.1538-7836.2011.04254.x. PMID 21382171. Research Blogging.
  75. 75.0 75.1 Tosetto A, Iorio A, Marcucci M, Baglin T, Cushman M, Eichinger S et al. (2012). "Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH).". J Thromb Haemost 10 (6): 1019-25. DOI:10.1111/j.1538-7836.2012.04735.x. PMID 22489957. Research Blogging.
  76. Anonymous (2024), Postthrombotic syndrome (English). Medical Subject Headings. U.S. National Library of Medicine.
  77. Bergan JJ, Schmid-Schönbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B (August 2006). "Chronic venous disease". N. Engl. J. Med. 355 (5): 488–98. DOI:10.1056/NEJMra055289. PMID 16885552. Research Blogging.
  78. 78.0 78.1 Heit JA, Rooke TW, Silverstein MD, et al (May 2001). "Trends in the incidence of venous stasis syndrome and venous ulcer: a 25-year population-based study". J. Vasc. Surg. 33 (5): 1022–7. DOI:10.1067/mva.2001.113308. PMID 11331844. Research Blogging.
  79. Train JS, Schanzer H, Peirce EC, Dan SJ, Mitty HA (August 1987). "Radiological evaluation of the chronic venous stasis syndrome". JAMA 258 (7): 941–4. PMID 3613024[e]
  80. Kahn, Susan R.; Ian Shrier, Jim A. Julian, Thierry Ducruet, Louise Arsenault, Marie-Jose Miron, Andre Roussin, Sylvie Desmarais, France Joyal, Jeannine Kassis, Susan Solymoss, Louis Desjardins, Donna L. Lamping, Mira Johri, Jeffrey S. Ginsberg (2008-11-18). "Determinants and Time Course of the Postthrombotic Syndrome after Acute Deep Venous Thrombosis". Ann Intern Med 149 (10): 698-707. Retrieved on 2008-11-18.
  81. Prandoni P, Lensing AW, Cogo A, et al (July 1996). "The long-term clinical course of acute deep venous thrombosis". Ann. Intern. Med. 125 (1): 1–7. PMID 8644983[e]
  82. Beyth RJ, Cohen AM, Landefeld CS (May 1995). "Long-term outcomes of deep-vein thrombosis". Arch. Intern. Med. 155 (10): 1031–7. PMID 7748045[e]
  83. Mohr DN, Silverstein MD, Heit JA, Petterson TM, O'Fallon WM, Melton LJ (December 2000). "The venous stasis syndrome after deep venous thrombosis or pulmonary embolism: a population-based study". Mayo Clin. Proc. 75 (12): 1249–56. PMID 11126832[e]
  84. Ziegler S, Schillinger M, Maca TH, Minar E (January 2001). "Post-thrombotic syndrome after primary event of deep venous thrombosis 10 to 20 years ago". Thromb. Res. 101 (2): 23–33. DOI:10.1016/S0049-3848(00)00370-4. PMID 11342203. Research Blogging.
  85. Rodger MA, Kahn SR, Wells PS, et al (August 2008). "Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy". CMAJ 179 (5): 417–26. DOI:10.1503/cmaj.080493. PMID 18725614. PMC 2518177. Research Blogging.