Slater determinant: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
No edit summary
imported>Paul Wormer
Line 57: Line 57:
The term [[electron shell|closed shell]] originates in [[atomic spectroscopy]] where it stand for a set of doubly occupied [[atomic orbital]]s of the same [[principal quantum number]] ''n''. A closed subshell is a set of doubly occupied orbitals with same ''n'' and same [[angular momentum (quantum)| angular momentum]] quantum number ''l''.  In molecules a closed shell is a set (usually the lowest in energy) of doubly occupied [[molecular orbital]]s.
The term [[electron shell|closed shell]] originates in [[atomic spectroscopy]] where it stand for a set of doubly occupied [[atomic orbital]]s of the same [[principal quantum number]] ''n''. A closed subshell is a set of doubly occupied orbitals with same ''n'' and same [[angular momentum (quantum)| angular momentum]] quantum number ''l''.  In molecules a closed shell is a set (usually the lowest in energy) of doubly occupied [[molecular orbital]]s.


In order to clarify the transformation properties of a Slater determinant we change to a notation
that is more common in matrix theory:
:<math>
\chi_i(\mathbf{x}_j) \equiv g_{ji}, \qquad i,j=1,2,\ldots, N.
</math>
Then the Slater determinant given above is the determinant of the matrix
:<math>
\mathbb{G} =
\begin{pmatrix}
g_{11} & g_{12} & g_{13} & \dots\dots  & g_{1N} \\
g_{21} & g_{22} & \dots  & \dots \dots & g_{2N} \\
\vdots &\vdots  &        &            & \vdots \\
g_{N1} & g_{N2} & \dots  & \dots\dots  &g_{NN}  \\
\end{pmatrix}.
</math>
That is to say,
:<math>
\det(\mathbb{G}) \equiv
\begin{vmatrix}
\chi_{1}(\mathbf{x}_1)  & \chi_{2}(\mathbf{x}_1) & \chi_{3}(\mathbf{x}_1) & \dots    & \chi_{N}(\mathbf{x}_1) \\
\chi_{1}(\mathbf{x}_2) & \chi_{2}(\mathbf{x}_2) & \dots    & \dots  & \chi_{N}(\mathbf{x}_2) \\
\vdots    &\vdots    &          &            & \vdots \\
\chi_{1}(\mathbf{x}_N) & \chi_{2}(\mathbf{x}_N) & \dots    & \dots  &\chi_{N}(\mathbf{x}_N)  \\
\end{vmatrix},
</math>
which is indeed the Slater determinant given above.
Transformation of the spinorbitals by a matrix gives in the two notations,
:<math>
\chi_i'(\mathbf{x}_j) = \sum_{k=1}^N \chi_k(\mathbf{x}_j) A_{ki}
\quad \Longleftrightarrow \quad
g_{ji}' = \sum_{k=1}^N g_{jk} A_{ki}.
</math>
In matrix language this reads
:<math>
\mathbb{G}' = \mathbb{G}\mathbb{A} \quad \Longrightarrow \det(\mathbb{G}') = \det(\mathbb{G})\det(\mathbb{A}),
</math>
where we used the well-known multiplication rule for determinants of product matrices.
In other words, if the spinorbitals appearing in a Slater determinant are transformed among each other by a matrix <math>\scriptstyle \mathbb{A}</math> then the only effect on the Slater determinant is that is  multiplied by the constant <math>\scriptstyle \det(\mathbb{A})</math>.
This general result is not very useful for arbitrary Slater determinants, because the matrix <math>\scriptstyle \mathbb{A}</math> mixes spin &alpha;-orbitals with  spin &beta;-orbitals, which usually is not desirable. For closed shells, however, where all spatial orbitals occur twice, once with an &alpha;-spin and once with a &beta;-spin, the result is very important.
'''(To be continued)'''
'''(To be continued)'''



Revision as of 07:21, 12 January 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In quantum mechanics, a Slater determinant is a simple approximate expression for a wave function of a multi-fermion system—usually a multi-electron system.

The Slater determinant is constructed from a single spin-orbital product (an independent particle wave function). It is the simplest possible construction of a wave function that satisfies the Pauli principle—an antisymmetric wave function. A Slater determinant changes sign upon simultaneous transposition of space and spin coordinates of any pair its fermions (electrons).

It is common to refer to a Slater determinant as an independent particle wave function, just like the product from which it is constructed, although the Slater determinant has built in some correlation between the spins.

The Slater determinant is named for its inventor, John C. Slater, who published the construction as a simple answer to the complicated group theoretical constructions for antisymmetric wave functions that had been introduced by Hermann Weyl and Eugene Wigner in the 1920s.[1]

Two-particle case

The simplest way to approximate the wavefunction of a many-particle system is to consider the product of properly chosen one-fermion wavefunctions (spin-orbitals) of the individual particles. For the two-particle case, we have

where xi indicates a space and spin coordinate of particle i. This spin-orbital product can be used as an Ansatz for the molecular wavefunction and is known as an independent particle function. However, it is not satisfactory for fermions, such as electrons, because the wavefunction is not antisymmetric as it should according to the Pauli principle. This problem can be overcome by taking a linear combination of two orbital products

where the coefficient normalizes the left hand side (provided the spin-orbitals are orthonormal). This wavefunction is antisymmetric and no longer distinguishes between electrons. Moreover, it vanishes if the two spin-orbitals are proportional or if x1 = x2. This is equivalent to satisfying the Pauli exclusion principle.

The antisymmetric function can be written as a 2 x 2 determinant (dropping the normalization factor)

Generalization to N particles

The expression can be generalized to any number of fermions by writing it as a determinant. For an N-electron system, the Slater determinant is defined as

If this determinant is worked out, either by the Laplace expansion, or by the Leibniz rule, it becomes a sum of N! terms, which differ from each other by any of the N! permutations of the particle coordinates. The sign of the term is the parity (or signature) of the permutation. Since the permutation of rows i and j is equivalent to permutation of the coordinates xi and xj, and since a determinant changes sign upon permutation of two rows, it follows that a Slater determinants is antisymmetric under transposition of these two coordinates. Moreover determinant theory shows that the Slater determinant vanishes if the set {χi } is linearly dependent. In particular this is the case when two (or more) spinorbitals are the same. In chemistry one expresses this fact by stating that no two electrons can occupy the same spinorbital (Pauli exclusion principle). Mathematicians may recognize a Slater determinant as an antisymmetric tensor, also known as a wedge product.

A single Slater determinant is used as an approximation to the electronic wavefunction in Hartree-Fock theory. In more accurate theories (such as configuration interaction and MCSCF), a linear combination of Slater determinants is needed.

Closed shells

A Slater determinant, describing a closed shell, is invariant (up to a factor) under linear transformation of the spinorbitals constituting the closed shell.

The term closed shell originates in atomic spectroscopy where it stand for a set of doubly occupied atomic orbitals of the same principal quantum number n. A closed subshell is a set of doubly occupied orbitals with same n and same angular momentum quantum number l. In molecules a closed shell is a set (usually the lowest in energy) of doubly occupied molecular orbitals.

In order to clarify the transformation properties of a Slater determinant we change to a notation that is more common in matrix theory:

Then the Slater determinant given above is the determinant of the matrix

That is to say,

which is indeed the Slater determinant given above.

Transformation of the spinorbitals by a matrix gives in the two notations,

In matrix language this reads

where we used the well-known multiplication rule for determinants of product matrices. In other words, if the spinorbitals appearing in a Slater determinant are transformed among each other by a matrix then the only effect on the Slater determinant is that is multiplied by the constant .

This general result is not very useful for arbitrary Slater determinants, because the matrix mixes spin α-orbitals with spin β-orbitals, which usually is not desirable. For closed shells, however, where all spatial orbitals occur twice, once with an α-spin and once with a β-spin, the result is very important.


(To be continued)

See also

References

  1. Slater, John. C. (1929). Theory of Complex Spectra Physical Review, vol. 34, p. 1293.