Archive:New Draft of the Week: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
imported>Anthony.Sebastian
Line 59: Line 59:
| <!-- score                --> 3
| <!-- score                --> 3
| <!-- supporters            -->  
| <!-- supporters            -->  
| <!-- specialist supporters --> [[User:Anthony.Sebastian|Anthony.Sebastian]] 02:17, 19 June 2009 (UTC)
| <!-- specialist supporters --> [[User:Anthony.Sebastian|Anthony.Sebastian]]
| <!-- date created          --> 2009-06-18 (upped from 3 to 2)
| <!-- date created          --> 2009-06-18 (upped from 3 to 2)
|}
|}



Revision as of 21:21, 18 June 2009

The New Draft of the Week is a chance to highlight a recently created Citizendium article that has just started down the road of becoming a Citizendium masterpiece.
It is chosen each week by vote in a manner similar to that of its sister project, the Article of the Week.

Add New Nominees Here

To add a new nominee or vote for an existing nominee, click edit for this section and follow the instructions


Table of Nominees
Nominated article Score Supporters Specialist supporters Date created
Developed Article Air Quality Index 2 Paul Wormer; Milton Beychok 2009-06-18
Developing Article Hawaiian alphabet 2 Drew R. Smith; Shamira Gelbman 2009-06-17
Developing Article Now and Zen 3 Gareth Leng; Milton Beychok; Meg Ireland 2009-06-06
Developed Article Continuum hypothesis 2 Milton Beychok, Howard C. Berkowitz 2009-06-11
Developed Article Edward Teller 2 Milton Beychok, Howard C. Berkowitz 2009-06-06
Developed Article William Harvey 3 Anthony.Sebastian 2009-06-18 (upped from 3 to 2)

If you want to see how these nominees will look on the CZ home page (if selected as a winner), scroll down a little bit.

Recently created pages are listed on Special:NewPages.

Transclusion of the above nominees (to be done by an Administrator)

View Current Transcluded Nominees (after they have been transcluded by an Administrator)

The next New Draft of the Week will be the article with the most votes at 1 AM UTC on Thursday, 25 June 2009. I did the honors this time. Milton Beychok 06:20, 18 June 2009 (UTC)

Text in this section is transcluded from the respective Citizendium entries and may change when these are edited.

Nominated article Supporters Specialist supporters Dates Score
Developing Article Now and Zen: A 1988 studio album recorded by Robert Plant, with guest contributions from Jimmy Page. [e]
This article may be deleted soon.
To oppose or discuss a nomination, please go to CZ:Proposed for deletion and follow the instructions.

For the monthly nomination lists, see
Category:Articles for deletion.



Now and Zen
Image:NZalbum1988.jpg
Type Studio album
Artist Robert Plant
Release Date 29 February 1988
Recorded October - November 1987 at
Swanyard Studios, London
Marcus Studios, London.
Mixed at Swanyard Studios, London.
Genre Hard rock, rock
Language English
Length 46 minutes 59 seconds
Label Es Paranza Records
Catalogue Es Paranza 90863-1 (US)
Es Paranza 790 863-1 (UK)
Producer Robert Plant, Tim Palmer, and Phil Johnstone
Engineer Rob Bozas & Martin Russell

Now and Zen is an album by the former Led Zeppelin singer Robert Plant, released in 1988 via the record label Es Paranza. The album generated two Mainstream Rock Tracks|mainstream rock hits, 'Heaven Knows' (Number 1 for six weeks) and 'Tall Cool One' (Number 1 for four weeks), and earned Plant his first solo multi-platinum honour with RIAA.[1]

Overview

With a new backing band and time to rethink the direction of his career, Plant returned in late 1987 with more of the material that had historically defined him in Led Zeppelin. Although Plant persisted in utilising computerised audio technology, in a comparable fashion to his anteceding solo issues, for this release Plant re-integrated blues-rock that had all but been relinquished on his 1985 release Shaken 'n' Stirred.[2] Plant, who often uses mysterious and mystical lyrics, composes some of his most coherent songs, and the manner in which the writing complements the melodic arrangements are partially responsible for the commercial success of Now and Zen. A prominent guitar and an exotic aural texture to the recordings also marked another transformation in Plant's sound, who now added Middle Eastern colouration in compositions like 'Heaven Knows'. This is a musical direction that he would eventually re-engage with in the mid-1990s with the Jimmy Page and Robert Plant project.

This album is also notable in that it marks his first collaboration with keyboardist Phil Johnstone, who would continue to play and write with Plant on subsequent albums, and song-writer producer Dave Barrett. Plant's lifelong loyalty to his favourite Association football|football team Wolverhampton Wanderers (The Wolves) is expressed in the form of wolf motifs on the front cover. The working title for this recording project was in fact Wolves. In another symbolic return to his past, Plant's feather from Led Zeppelin IV in encapsulated in a crystal, next to the wolf motifs. The charting singles 'Heaven Knows' and 'Tall Cool One' features Led Zeppelin guitarist Jimmy Page (On the liner notes, Page's participation on the recordings were signified with a ZoSo symbol)[3], underpinning a riff similar to the Yardbirds-era standard 'The Train Kept a-Rollinˈ'. In retort to the Beastie Boys' unauthorised sampling of Led Zeppelin songs on their 1986 album Licensed to Ill, Plant also sampled Led Zeppelin tracks ('Whole Lotta Love', 'Black Dog', 'The Ocean (song)|The Ocean', and 'Custard Pie') on 'Tall Cool One', furthermore singing lyrical refrains from 'When the Levee Breaks (Led Zeppelin song)|When the Levee Breaks'.[4] Plant reflects with 'White, Clean and Neat', a song evoking teen life in the mid-1950s, when the arrival of rock 'n' roll divided families and whole generations. 'Walking Towards Paradise' was initially a bonus track obtainable only on the CD version of the album. Rhino Entertainment eventually issued a remastered edition of the album, with additional tracks, on 3 April 2007.

Plant performed 'Heaven Knows', 'Tall Cool One', and 'Ship of Fools' at the Atlantic Records 40th Anniversary concert in 1988. 'Ship of Fools' was also used on the final two-hour episode of Miami Vice entitled 'Freefall'.

In an interview he gave to Uncut (magazine)|Uncut magazine in 2005, Plant commented:

By the time Now and Zen came out in '89, it looked like I was big again. It was a Top 10 album on both sides of the Atlantic. But if I listen to it now, I can hear that a lot of the songs got lost in the technology of the time.[5]

Track list

Album information

1988 Track listing:

  • Side One:
  1. 'Heaven Knows' (Phil Johnstone, David Barrett) – 4:02
  2. 'Dance on My Own' (Robert Plant, Phil Johnstone, Robert Crash) – 4:31
  3. 'Tall Cool One' (Robert Plant, Phil Johnstone) – 4:37
  4. 'The Way I Feel' (Robert Plant, Phil Johnstone, Doug Boyle) – 5:39
  • Side Two:
  1. 'Helen of Troy' (Robert Plant, Phil Johnstone) - 5:03
  2. 'Billy's Revenge' (Robert Plant, Phil Johnstone) – 3:33
  3. 'Ship of Fools' (Robert Plant, Phil Johnstone) – 4:59
  4. 'Why' (Robert Plant, Robert Crash) – 4:12
  5. 'White, Clean and Neat' (Robert Plant, Phil Johnstone) – 5:28

Chart positions

Album

Chart (1988) Peak Position
Norwegian Albums Chart[6] 12
UK Albums Chart[7] 10
Swedish Albums Chart[8] 18
Canadian RPM Top 100 Chart[9] 4
US Billboard The 200 Albums Chart[10] 6
Australian ARIA Top 50 Albums Chart[11] 27
German Albums Chart[12] 48
New Zealand RIANZ Top 40 Albums Chart 7

Singles

Year Single Chart Position
1988 'Heaven Knows' UK Singles Chart[13] 33
1988 'Heaven Knows' US Billboard Hot Mainstream Rock Tracks Chart[14] 1
1988 'Heaven Knows' Canadian RPM Top 100 Chart[15] 65
1988 'Tall Cool One' US Billboard Hot Mainstream Rock Tracks Chart[16] 1
1988 'Tall Cool One' UK Singles Chart[17] 87
1988 'Tall Cool One' Australian ARIA Top 50 Singles Chart[18] 47
1988 'Tall Cool One' US Billboard Hot 100 Singles Chart[19] 25
1988 'Tall Cool One' Canadian RPM Top 100 Chart[20] 15
1988 'Tall Cool One' US Cash Box Top 100 Singles Chart[21] 31
1988 'Ship of Fools' US Billboard Hot Mainstream Rock Tracks Chart[22] 3
1988 'Ship of Fools' US Billboard Hot 100 Singles Chart[23] 84
1988 'Dance on My Own' US Billboard Hot Mainstream Rock Tracks Chart[24] 10
1989 'Walking Towards Paradise' US Billboard Hot Mainstream Rock Tracks Chart[25] 39

Certifications

Album

Country Sales Certification
United States (RIAA) 3,000,000+ 3× Multi-Platinum[26]

Credits

Personnel
  • Musicians:
    • Robert Plant - vocals, producer
    • Jimmy Page – lead guitar ('Heaven Knows' and 'Tall Cool One')
    • Phil Johnstone - keyboards, producer
    • Doug Boyle - guitar
    • Phil Scragg - bass guitar
    • Chris Blackwell - drums, percussion
  • Additional musicians:
    • David Barrett - programming, keyboards, engineer
    • Robert Crash - programming
    • Marie Pierre - backing vocals
    • Toni Halliday - backing vocals
    • Kirsty MacColl - backing vocals
    • Jerry Wayne - background voice ('White, Clean and Neat')
  • Production:
    • Tim Palmer - producer
    • Bob Bozas - engineer
    • Martin Russell - engineer
    • Jonathan Dee - engineer
    • Michael Gregovich - engineer
    • Tim Burrell - engineer
    • Richard Evans - design, art direction
    • Davies & Starr - photography

Notes

  1. Pesselnick, Jill (October 2001). "Certifications: Beasties Toasted in Latest Certifications". Billboard 113 (43): 54. ISSN 0006-2510. Retrieved on 5 June 2009.
  2. Daniels, Neil (2008). Robert Plant: Led Zeppelin, Jimmy Page & the Solo Years, 1st. Church Stretton, Shropshire: Independent Music Press, 122. ISBN 0-9552822-7-6. 
  3. Case, George (2007). Jimmy Page: Magus, Musician, Man - An Unauthorized Biography. New York: Hal Leonard, 174. ISBN 1-4234-0407-1. 
  4. Lewis, Dave (2004). Led Zeppelin: The Complete Guide to Their Music. London: Omnibus Press. ISBN 1-84449-141-2. 
  5. Williamson, Nigel. 'Good Times...Bad Times', Uncut (magazine)|Uncut, May 2005, p. 62.
  6. Top 40 Albums - 6 March 1988. norwegiancharts.com. Retrieved on 17 January 2009.
  7. Top 100 Albums - 12 March 1988. chartstats.com. Retrieved on 17 January 2009.
  8. Top 60 Albums - 16 March 1988. swedishcharts.com. Retrieved on 17 January 2009.
  9. RPM Albums Chart - 9 April 1988. RPM. Retrieved on 17 January 2009.
  10. The Billboard 200 - 21 May 1988. Billboard. Retrieved on 17 January 2009.
  11. Top 50 Albums - 3 July 1988. ARIA. Retrieved on 17 January 2009.
  12. Top 100 Albums - July 1988. charts-surfer.de. Retrieved on 19 January 2009.
  13. Top 100 Singles - 13 February 1988. chartstats.com. Retrieved on 19 January 2009.
  14. Hot Mainstream Rock Tracks - 20 February 1988. Billboard. Retrieved on 19 January 2009.
  15. RPM Singles Chart - 9 April 1988. RPM. Retrieved on 19 January 2009.
  16. Hot Mainstream Rock Tracks - 9 April 1988. Billboard. Retrieved on 19 January 2009.
  17. Top 100 Singles - 30 April 1988. chartstats.com. Retrieved on 19 January 2009.
  18. Top 50 Singles - 26 June 1988. ARIA. Retrieved on 19 January 2009.
  19. Hot 100 Singles - 2 July 1988. Billboard. Retrieved on 19 January 2009.
  20. RPM Singles Chart - 9 July 1988. RPM. Retrieved on 19 January 2009.
  21. Top 100 Singles - 9 July 1988. Cash Box. Retrieved on 19 January 2009.
  22. Hot Mainstream Rock Tracks - 11 June 1988. Billboard. Retrieved on 20 April 2009.
  23. Hot 100 Singles - 3 September 1988. Billboard. Retrieved on 19 January 2009.
  24. Hot Mainstream Rock Tracks - 13 August 1988. Billboard. Retrieved on 20 April 2009.
  25. Hot Mainstream Rock Tracks - 14 January 1989. Billboard. Retrieved on 20 April 2009.
  26. RIAA.org Now and Zen - 7 September 2001. RIAA. Retrieved on 20 April 2009.
 (Read more...)
Gareth Leng; Milton Beychok; Meg Ireland 3


Developing Article Hawaiian alphabet: The form of writing used in the Hawaiian Language [e]

Archive:New Draft of the Week
Type Alphabet
Spoken languages Hawaiian language
Created by American Protestant missionaries
Time period 1822-Present
Parent systems

As an oral tradition, handed down generation after generation, the true origins of the Hawaiian language are relatively unknown. The Hawaiian alphabet, ka pīāpā Hawai i, however, does not have such an obscure past. It was originally designed in the early 1800s by American missionaries who wanted to print a Hawaiian bible. Due to the language being passed down as an oral tradition, the missionaries had to adapt the Roman alphabet to fit their needs.

Origins

In 1778, British explorer James Cook made the first reported European discovery of Hawaiʻi. In his report, he wrote the name of the islands as "Owhyhee" or "Owhyee". By July 1823, they had begun using the phrase "Hawaiian Language." The actual writing system was developed by American Protestant missionaries on January 7, 1822. The original alphabet included
A, B, D, E, F, G, H, I, K, L, M, N, O, P, R, S, T, U, V, W, Y, Z
and seven diphthongs
AE, AI, AO, AU, EI, EU, OU.
In 1826, the developers voted to eliminate some of the letters which represented functionally redundant interchangeable letters, enabling the Hawaiian alphabet to approach the ideal state of one-symbol-one-sound, and thereby optimizing the ease with which people could teach and learn the reading and writing of Hawaiian.

  • Interchangeable B/P. B was dropped, P was kept.
  • Interchangeable L/R. L was kept, R was dropped.
  • Interchangeable K/T. K was kept, T was dropped.
  • Interchangeable V/W. V was dropped, W was kept.

ʻOkina

Due to words with different meanings being spelled alike, use of the glottal stop became necessary. As early as 1823, the missionaries made limited use of the apostrophe to represent the glottal stop, but they did not make it a letter of the alphabet. In publishing the Hawaiian bible, they used the ʻokina to distinguish koʻu ('my') from kou ('your'). It wasn’t until 1864 that the ʻokina became a recognized letter of the Hawaiian alphabet.

Kahakō

As early as 1821, one of the missionaries, Hiram Bingham, was using macrons in making handwritten transcriptions of Hawaiian vowels. The macron, or kahakō, was used to differentiate between short and long vowels. The macron itself never became an official letter. Instead, a second set of vowels with macrons were added to the language as separate letters.

Modern Alphabet

A children's alphabet book in Hawaiian
The current official Hawaiian Alphabet consists of 18 letters: 5 normal vowels; Aa, Ee, Ii, Oo, Uu: 5 Vowels with Macrons; Āā, Ēē, Īī, Ōō, Ūū: and 8 consonants; Hh, Kk, Ll, Mm, Nn, Pp, Ww, ʻokina.

Pronunciation

Character Character Name IPA
Aa /a/
Ee /e/
Ii /i/
Oo /o/
Uu /u/
Āā 'ākō /aː/
Ēē 'ēkō /eː/
Īī 'īkō /iː/
Ōō 'ōkō /oː/
Ūū 'ūkō /uː/
Hh /h/
Kk /k/
Ll /l/
Mm /m/
Nn /n/
Pp /p/
Ww /ʋ/
ʻ ʻokina /ʔ/

Diphthongs

Diphthongs
Diphthongs Pronunciation Examples
ai i in ice kai = sea water
ae I or eye Maeʻola = Never-fading
ao ow in how

without nasal twang

Maoli = True

Kaona = Hidden Meaning

au ou in house or out

without nasal twang

Au = I, I am
ei ei in chow mein

or in eight

Lei = Garland
eu eh-(y)oo ʻEleu = Lively
iu ee-(y)oo

similar to ew in few

Wēkiu = Topmost
oe oh-(w)eh ʻOe = You
oi oi in voice Poi = Hawaiian Staple
ou ow in bowl Kou = your
ui oo-(w)ee in gooey Hui = Together, team, Chorus

References

Alternative Hawaii

Omniglot (Read more...)

Drew R. Smith; Shamira Gelbam 2


Developed Article Air Quality Index: A number used by government agencies to characterize the quality of the ambient air at a given location. [e]

(CC) Photo: The Port of Los Angeles (California, USA)
An air quality monitoring station.

The Air Quality Index (AQI), also known as the Air Pollution Index (API), Pollutant Standard Index (PSI) or Air Quality Health Index (AQHI), is a number used by government agencies to characterize the quality of the ambient air at a given location. As the AQI increases, the severity of probable adverse health effects increases as does the percentage of the population expected to be affected by the adverse health effects.

To compute the AQI requires an air pollutant concentration to be obtained from an air quality monitoring station. The method used to convert from air pollutant concentrations to AQIs varies for each air pollutant, and is different in different countries.

In many countries, air quality index values are divided into ranges, and each range is assigned a descriptor (i.e., a very few words describing the air quality or the health effects of the range) and often a color code as well. A government agency might also encourage members of the public to avoid strenuous activities, use public transportation rather than personal automobiles and work from home when AQI levels are high.

Many countries monitor ground-level ozone, particulate matter (PM10), sulfur dioxide (S02), carbon monoxide (CO) and nitrogen dioxide (NO2) and calculate air quality indices for these pollutants. Most other air contaminants do not have an associated AQI.

Air Quality Indices by country

Canada's AQHI[1]
Air Quality
Health Index
(AQHI)
Health Risk
Category
Color
Code
1 – 3 Low ColorCode123.png
4 – 6 Moderate ColorCode456.png
 7 – 10 High ColorCode78910.png
10+ Very High ColorCode10+.png

Canada

Environment Canada, the national environmental protection agency of Canada, uses Air Quality Health Index (AQHI) categories ranging from 1 to 10+ and each category has an assigned color code (see adjacent table) that enables members of the general public to easily identify their health risks as indicated in published air quality forecasts.[1]

As shown in the adjacent table:

  • The three AQHI levels of 1, 2 and 3 are all in the low risk category.
  • The three AQHI levels of 4, 5 and 6 are all in the moderate risk category.
  • The four AQHI levels of 7, 8, 9 and 10 are all in the high risk category.
  • The AQHI level of 10+ is the very high risk category.

As of 2009, many of the Canadian provinces, if not all, have adopted the AQHI categories implemented by Environment Canada.

China

China's National API[2]
Air Pollution
Index
(API)
Air Quality
Level
Air Quality
Category
 0 – 50 I Excellent
 51 – 100 II Good
101 – 200 III Slightly polluted
201 – 300 IV Moderately polluted
301+ V Heavily polluted
Beijing's API[2]
 0 – 50   Good
 51 – 100   Moderate
101 – 150   Unhealthy for
sensitive groups
151 – 200   Unhealthy
201 – 250   Very unhealthy
251 – 500   Hazardous
Hong Kong's API[3]
Air Pollution
Index
(API)
Health Effect
Category
Color
Code
 0 – 25 Low  
26 – 50 Medium  
 51 – 100 High  
101 – 200 Very High  
201 – 500 Severe  

China's Ministry of Environmental Protection (MEP)[2][4] is responsible for monitoring the level of air pollution in China.

As of August 2008, MEP monitors daily pollution level in its major cities and develops an Air Pollution Index (API) level that is based on the ambient air concentrations sulfur dioxide, nitrogen dioxide, particulate matter (PM10), carbon monoxide, and ozone as measured at monitoring stations in each of those major cities.[2][4]

The adjacent table presents China's national API scale, which is not color coded and uses a scale 0 to more than 300, divided into five ranges of air quality categorized as excellent, good, slightly polluted, heavily polluted and hazardous.

API Mechanics

An individual score is assigned to the level of each pollutant and the final API is the highest of those 5 scores. The pollutant concentrations are obtained quite differently. Sulfur dioxide, nitrogen dioxide and PM10 concentrations are obtained as daily averages. Carbon monoxide and ozone are more harmful and are obtained as an hourly averages. The final API value is calculated as a daily average.[2][4]

The scale for each pollutant is non-linear, as is the final daily API value. Thus, an API value of 100 does not mean it is twice the pollution of API at 50, nor does it mean it is twice as harmful.

Beijing's API

China's capitol city, Beijing, has its own API scale, which was developed by the Beijing Municipal Environmental Protection Bureau.[5] As can be seen in the adjacent table, the API scale used by Beijing differs quite significantly from China's national scale in that:

    • The Beijing scale ranges from 0 to 500 (rather than 0 to 300 as in the national scale)
    • The Beijing scale is divided into six ranges of air quality (rather than five ranges as in the national scale).

Hong Kong

The Hong Kong Environmental Protection Department (Hong Kong EPD) has developed a color coded Air Pollution Index (API) based upon the measured concentrations of ambient particulate matter (PM10), sulfur dioxide, carbon monoxide, ozone and nitrogen dioxide over a 24-hour period.

Hong Kong's color coded Air Pollution Index (API) scale ranges from 0 to 500 corresponding to adverse health effects that range from low to severe as shown in the adjacent chart:[3]

  • An API at or below 100 means that the pollutant levels are in the satisfactory range over 24 hour period and pose no acute or immediate health effects.
  • Persistent high API values (51 to 100) in a year may mean that the annual Hong Kong Air Quality Objectives for protecting long-term health effects could be violated.
  • API values in excess of 100 (very high) mean that levels of one or more pollutant(s) is/are in the unhealthy range. The Hong Kong EPD provides advice to the public regarding precautionary actions to take for such levels.

Although Hong Kong is now part of China, it can be seen that Hong Kong's API scale differs from both China's scale and Beijing's scale.

Malaysia's API[6]
Air Pollution
Index
(API)
Air Quality
Category
 0 – 50 Good
 51 – 100 Moderate
101 – 200 Unhealthy
201 – 300 Very Unhealthy
301+ Hazardous

Malaysia

The air quality in Malaysia is described in terms of an Air Pollutant Index (API). The API is an indicator of air quality and was developed based on scientific assessment to indicate in an easily understood manner, the presence of pollutants and its impact on health. The API system of Malaysia closely follows the similar system developed by the U.S. Environmental Protection Agency (U.S. EPA). As shown in the adjacent table, Malaysia does not color code their air quality categories.

Monitoring stations measure the concentration of five major pollutants in the ambient air: PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone. These concentrations are measured continuously on an hourly basis. The hourly value is then averaged over a 24-hour period for PM110 and sulfur dioxide and an 8-hour period for carbon monoxide. The ozone and nitrogen dioxide are read hourly. An hourly index is then calculated for each pollutant. The highest hourly index value is then taken as the API for the hour.

When the API exceeds 500, a state of emergency is declared in the reporting area. Usually, this means that non-essential government services are suspended, and all ports in the affected area closed. There may also be a prohibition on private sector commercial and industrial activities in the reporting area excluding the food sector.

Mexico's IMECA[7]
Air Quality
Index
(IMECA)
Air Quality
Category
Color
Code
 0 – 50 Good  
 51 – 100 Moderate  
101 – 200 Unhealthy  
201 – 300 Very Unhealthy  
301+ Extremely Unhealthy  

Mexico

The air quality in Mexico is described and reported hourly in terms of a color coded Metropolitan Index of Air Quality (IMECA), developed by the Ministry of the Environment for the Government of the Federal District.

The IMECA is calculated from the results of real-time monitoring of the ambient concentrations of ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide and particulate matter (PM10).

The IMECA was developed specifically for the Federal District of Mexico which only encompasses Mexico City and its surrounding suburbs and adjacent municipalities.

The real-time monitoring of the ambient atmosphere is performed by the Sistema de Monitoreo Atmosférico de la Ciudad de México (SIMAT or System of Atmospheric Monitoring for Mexico City).

SIMAT's real-time monitoring includes monitoring of the ultra-violet (UV) radiation from the sun and the results are also described and reported hourly as IUVs (Índice de Radiación Ultravioleta) in a manner that is similar to the reporting of the IMECAs.[8]

Singapore's PSI[9]
Pollution
Standard Index
(24-hour PSI)
Air Quality
Category
 0 – 50 Good
 51 – 100 Moderate
101 – 200 Unhealthy
201 – 300 Very Unhealthy
301+ Hazardous

Singapore

Singapore's National Environment Agency (NEA) in the Ministry of the Environment and Water Resources (MEWR) has the responsibility for the real-time monitoring of the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone and PM10 in the ambient air of Singapore.

The real-time monitoring of the ambient air quality is done by a telemetric network of air quality monitoring stations strategically located in different parts of Singapore.

The NEA uses the real-time monitoring data to obtain and report 24-hour Pollution Standard Index (PSI) levels along with their corresponding air quality categories as shown in the adjacent table and which does not use color coding.[9]

The NEA states that the PSI scale developed for use in Singapore is very similar to the scale developed and used by the U.S. Environmental Protection Agency. The NEA also further states that the National Ambient Air Quality Standards (NAAQS) developed by the U.S. Environmental Protection Agency are used to assess Singapore's air quality.

Although the adjacent table indicates that the NEA categorizes a 24-hour PSI level that is higher than 300 as being hazardous, the NEA also considers a 24-hour PSI level higher than 400 to be life-threatening to ill and elderly persons.[10]

United Kingdom's API[11]
Air Pollution
Index (API)
Health Effect
Banding
Color
Code
1 – 3 Good  
4 – 6 Moderate  
7 – 9 High  
10 Very High  

United Kingdom

AEA Technology, a British environmental consulting company, issues air quality forecasts for the United Kingdom (UK) on behalf of the Department for Environment, Food and Rural Affairs (Defra).[11] The scale used in the United Kingdom is an Air Pollution Index (API) with levels ranging from 1 to 10 as shown in the attached table and it is color coded.

The scale was thoroughly studied and approved by the United Kingdom's government advisory body, namely the "Committee on Medical Effects of Air Pollution Episodes" (COMEAP).[11]

The scale is based on continuous monitoring, in locations throughout the United Kingdom, of the ambient air for the concentrations of the major air pollutants, namely sulfur dioxide, nitrogen dioxide, ozone, carbon monoxide and PM10. The forecasts issued by AEA Technology are based on the prediction of air pollution index for the worst-case of the five pollutants.

As shown in the adjacent table, the health effect of each API range is referred to as its banding rather than as its category. The health effect bandings for the API ranges are low, moderate, high and very high.

United States' AQI[12]
Air Quality
Index
(AQI)
Air Quality
Category
Color
Code
 0 – 50 Good  
 51 – 100 Moderate  
101 – 150 Unhealthy for
Sensitive Groups
 
151 – 200 Unhealthy  
201 – 300 Very Unhealthy  
301 – 500 Hazardous  

United States

The Air Quality Index (AQI) ranges used by the U.S. Environmental Protection Agency (U.S. EPA) and their corresponding health effect categories and color codes are provided in the adjacent table. The U.S. EPA's AQI is also known as the Pollution Standards Index (PSI).

If multiple pollutants are measured at a monitoring site, then the largest or "dominant" AQI value is reported for the location.

The U.S. EPA has developed conversion calculators, available online,[13][14] for the conversion of AQI values to concentration values and for the reverse conversion of concentrations to AQI values.

A national map of the United States of America containing daily AQI forecasts across the nation, developed jointly by the U.S. EPA and NOAA is also available online.[15]

The U.S. Clean Air Act requires the U.S. EPA to review its National Ambient Air Quality Standards[16] every five years to reflect evolving health effects information. The Air Quality Index is adjusted periodically to reflect these changes.

Air pollutant concentration measurement units

In the United States, the concentrations of the air pollutants involved in the AQI are usually expressed as:

  • Ozone and sulfur dioxides: ppbv = parts per billion (10 9) by volume = volume of pollutant gas per billion volumes of ambient air
  • Carbon monoxide: ppmv = parts per million (10 6) by volume = volume of pollutant gas per million volumes of ambient air
  • PM10, defined as particulate matter having an aerodynamic diameter of 10 μm (micrometer) or less: ug/m³ = micrograms of particulate matter per cubic metre of ambient air
  • PM2.5, defined as particulate matter having an aerodynamic diameter of 2.5 μm (micrometer) or less: ug/m³ = micrograms of particulate matter per cubic metre of ambient air

References

  1. 1.0 1.1 About the Air Quality Health Index (From the website of Environment Canada)
  2. 2.0 2.1 2.2 2.3 2.4 Air Quality Monitoring and Forecasting in China Air Quality Monitoring & Forecasting in China (AMFIC). Published on KNMI website.
  3. 3.0 3.1 API and Air Monitoring Background Information (From the website of the Hong Kong Environmental Protection Department)
  4. 4.0 4.1 4.2 Ambient Air Quality Standard Includes link to the standard, GB3095-1996, in Chinese
  5. Beijing Municipal Environmental Protection Bureau (predominantly in Chinese)
  6. Air Pollutant Index (API) Department of the Environment, [[Malaysian Ministry of Natural Resources and Environment.
  7. IMECA (Índice Metropolitano de la Calidad del Aire)
  8. What is an Index of Ultraviolet Radiation?
  9. 9.0 9.1 Frequently Asked Questions on the Haze (From the website of Singapore's National Environment Agency (NEA).
  10. Haze Action Plan (From the website of the NEA)
  11. 11.0 11.1 11.2 Air Quality Standards (From a website maintained by AEA Technology on behalf of DEFRA)
  12. Air Quality Index (AQI) - A Guide to Air Quality and Your Health From the AIRNow web site jointly maintained by the U.S. EPA, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies
  13. AQI Calculator: AQI to Concentration
  14. AQI Calculator: Concentration to AQI
  15. Today's National Air Quality Forecast
  16. National Ambient Air Quality Standards (From the website of the U.S. EPA)
 (Read more...)
Paul Wormer; Milton Beychok 2


Developed Article Continuum hypothesis: A statement about the size of the continuum, i.e., the number of elements in the set of real numbers. [e]

In mathematics, the continuum hypothesis is the statement that any arbitrary infinite set of real numbers has either as many elements as there are real numbers or only as many elements as there are natural numbers (i.e., there is no intermediate size). This is equivalent to the statement that there are as many real numbers as there are elements in the smallest set which is larger than the set of natural numbers.

Since the set of real numbers (or the real line) is also called the continuum this can be shortly expressed as:

Any set of real numbers is either countable or equivalent to the continuum.

This statement was first made by Georg Cantor (1877) when he studied subsets of the real line. Cantor (who introduced sets and cardinal numbers) believed this to be true, but tried in vain to prove it.

From then on it stayed, for a long time, a prominent open mathematical problem to resolve. In 1900, David Hilbert included the continuum hypothesis as the first problem, therefore also called "first Hilbert problem", in his famous lecture on 23 problems for the twentieth century.

The first step towards a solution was done in 1938 by Kurt Gödel who showed that – in set theory including the axiom of choice – the (generalized) continuum hypothesis cannot be proved to be false (and thus is consistent with it). Only much later, in 1963, Paul J. Cohen showed that it cannot be proved, either. Hence the continuum hypothesis is independent of the usual (ZFC) axioms of set theory. It therefore constitutes an important, not artificially constructed, example for Gödel's Second Incompleteness Theorem.

Consequently, either the continuum hypothesis or, alternatively, some contradicting assumption could be added to the axioms of set theory. But since – in contrast to the situation with the axiom of choice – there is no heuristically convincing reason to choose one of these possibilities, the "working" mathematician usually makes no use of the continuum hypotheses, and if a result depends on it, then it is explicitly mentioned.

Of course, in axiomatic set theory, and especially in the theory of cardinal and ordinal numbers, the situation is different and the consequences of the various choices concerning the continuum hypothesis are extensively studied.

The generalized continuum hypothesis is a much stronger statement involving the initial sequence of transfinite cardinal numbers, and is also independent of ZFC.

In terms of the arithmetic of cardinal numbers (as introduced by Cantor) the continuum hypothesis reads

while the generalized continuum hypothesis is

Georg Cantor 1877

The continuum hypothesis appears in a memoir of Cantor (dated Halle a.S., 11th July 1877, and published 1878) in which he investigates sets of real numbers. He concludes with the following remark:

Darnach würden die linearen Mannigfaltigkiten aus zwei Klassen bestehen von denen die erste alle Mannigfaltigkeiten in sich fasst, welche sich auf die Form: functio ips. ν (wo ν alle positiven ganzen Zahlen durchläuft) bringen lassen; während die zweite Klasse alle diejenigen Mannigfaltigkeiten in sich aufnimmt, welche auf die Form: functio ips. x (wo x alle reellen Werthe ≥0 und ≤1 annehmen kann) zurückführbar sind. Entsprechend diesen beiden Klassen würden daher bei unendlichen linearen Mannigfaltigkeiten nur zweierlei Mächtigkeiten vorkommen; die genaue Untersuchung dieser Frage verschieben wir auf eine spätere Gelegenheit.

Translated freely, this paragraph reads as follows:

Hence the linear manifolds would consist of two classes of which the first contains all manifolds that can be written in the form: function of ν (where ν takes all positive integers); while the second class contains all those manifolds that have the form: function of x (where x takes all values ≥0 and ≤1). Hence, corresponding to these two classes, there would be only two cardinalities of infinite linear manifolds; the detailed investigation of this problem will be postponed on a later opportunity.

David Hilbert 1900

In his lecture on Mathematical problems, delivered before the International Congress of Mathematicians at Paris in 1900, David Hilbert states the continuum hypothesis as follows:

1. Cantors Problem von der Mächtigkeit des Continuums.
Zwei Systeme, d. h. zwei Mengen von gewöhnlichen reellen Zahlen (oder Punkten) heißen nach Cantor aequivalent oder von gleicher Mächtigkeit, wenn sie zu einander in eine derartige Beziehung gebracht werden können, daß einer jeden Zahl der einen Menge eine und nur eine bestimmte Zahl der anderen Menge entspricht. Die Untersuchungen von Cantor über solche Punktmengen machen einen Satz sehr wahrscheinlich, dessen Beweis jedoch trotz eifrigster Bemühungen bisher noch Niemanden gelungen ist; dieser Satz lautet:
Jedes System von unendlich vielen reellen Zahlen d. h. jede unendliche Zahlen- (oder Punkt)menge ist entweder der Menge der ganzen natürlichen Zahlen 1, 2, 3, ... oder der Menge sämmtlicher reellen Zahlen und mithin dem Continuum, d. h. etwa den Punkten einer Strecke aequivalent; im Sinne der Aeqivalenz giebt es hiernach nur zwei Zahlenmengen, die abzählbare Menge und das Continuum.
Aus diesem Satz würde zugleich folgen, daß das Continuum die nächste Mächtigkeit über die Mächtigkeit der abzählbaren Mengen hinaus bildet; der Beweis dieses Satzes würde mithin eine neue Brücke schlagen zwischen der abzählbaren Menge und dem Continuum.

In the English translation which was published in 1902:

1. Cantor's problem of the cardinal number of the continuum
Two systems, i. e., two assemblages of ordinary real numbers or points, are said to be (according to Cantor) equivalent or of equal cardinal number, if they can be brought into a relation to one another such that to every number of the one assemblage corresponds one and only one definite number of the other. The investigations of Cantor on such assemblages of points suggest a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. This is the theorem:
Every system of infinitely many real numbers, i. e., every assemblage of numbers (or points), is either equivalent to the assemblage of natural integers, 1, 2, 3,... or to the assemblage of all real numbers and therefore to the continuum, that is, to the points of a line; as regards equivalence there are, therefore, only two assemblages of numbers, the countable assemblage and the continuum.
From this theorem it would follow at once that the continuum has the next cardinal number beyond that of the countable assemblage; the proof of this theorem would, therefore, form a new bridge between the countable assemblage and the continuum.

Hilbert continues this problem, now known as the "First Hilbert Problem" by describing another unproven claim of Cantor (which he thought to likely be related), namely the statement that there is a well-order of the real numbers. This property, however, turned out to be a consequence of the axiom of choice.

Kurt Gödel 1947

In an essay (published 1947, after his proof and before Cohen's result) Kurt Gödel argued that even if the continuum hypothesis would turn out to be independent (as he expected) this would not imply that it cannot be solved at all:

There might exist axioms so abundant in their verifiable consequences, shedding so much light upon a whole discipline, and furnishing such powerful methods for solving given problems (and even solving them, as far as that is possible, in a constructivistic way) that quite irrespective of their intrinsic necessity they would have to be assumed at least in the same sense as any well established physical theory.

He continues with a discussion of several arguments which support his position that the continuum hypothesis is likely to be wrong. (Read more...)

Milton Beychok; Howard C. Berkowitz 2


Developed Article Edward Teller: (January 15, 1908 - September 9, 2003) One of the most controversial scientists of the 20th century because of his role as the main developer of the hydrogen bomb, his outspoken defense of an unassailable nuclear arsenal, and support for President Reagan's Strategic Defensive Initiative. [e]

Edward Teller was an eminent and controversial theoretical physicist. He was born as Teller Ede in Budapest (Hungary) on January 15, 1908. He died in his home on the Stanford campus (Palo Alto, California) on September 9, 2003. He had been a senior research fellow at Stanford University's Hoover Institution since 1975 when he retired as professor of the University of California, Berkeley and as associate director of the Lawrence Livermore National Laboratory.

Edward Teller was one of the most controversial scientists of the 20th century because of his role as an advocate and conceptual designer of the hydrogen bomb, his outspoken defense of an unassailable nuclear arsenal, and support for President Reagan's Strategic Defensive Initiative ("Star Wars") ballistic missile defense program. During the McCarthy era he alienated many of his colleagues by his testimony in the 1954 security clearance hearings of J. Robert Oppenheimer, his former colleague and director of the Los Alamos Laboratory.

Youth

Edward Teller was born to Max Teller and Idona Deutsch, who both were assimilated Hungarian Jews. Edward's mother Idona was an accomplished pianist who gave up her aspirations to a concert career when she married Edward's father, who was a lawyer. As a young boy Edward experienced a short and fierce communist dictatorship under Béla Kun (March 21, 1919 – August 1, 1919); it has been suggested that his rabid aversion of communism in later life was rooted in this experience. The Hungarian communists were soon ousted by Rear Admiral Miklós Horthy who headed a fascist regime until the end of World War II.

In 1918 Edward entered the famous gymnasium "Minta" ("Model"; an advanced German type of high school founded by the father of Theodore von Kármán), where he met his later wife Augusta Maria ("Mici") Harkányi, who was a sister of one of Edward's closest school friends. The Harkányis were from Jewish descent but had converted to Calvinism. After finishing the gymnasium, Edward spent a few months at the university in Budapest, but January 2, 1926 he moved to Karlsruhe in Germany to study chemical engineering. Karlsruhe was at that time the seat of one of the most outstanding technical universities of the country; especially its chemical engineering was strong because of its close cooperation with I.G. Farben, in those days world's largest chemical company. In April 1928 Edward left the field of chemical engineering and moved to Munich to study theoretical physics under Arnold Sommerfeld, a great mathematical physicist who made important contributions to the development of quantum mechanics(Read more...)

Milton Beychok; Howard C. Berkowitz 2


Current Winner (to be selected and implemented by an Administrator)

To change, click edit and follow the instructions, or see documentation at {{Featured Article}}.


A wrench (American English), or spanner (British English), is a fastening tool used to manipulate threaded fasteners such as nuts, studs and bolts. They also may manipulate threaded structural elements such as pipes. The wrench is sized and shaped to put pressure and leverage on flat faces of the fastener, and then is moved in the direction of rotation needed to loosen or tighten the fastening assembly.

Hand tools

The most common hand wrenches are made either from a flat bar of steel, or from cylinders. Even with these two types, the wrench can either completely or partially surround the fastener.

Flat Bar

The most common hand wrenches either are open-ended, such that they have sides parallel to two or more facets of the nut, or box, which surrounds all sides of the nut. These types can drop over the nut no matter how much of the screw or bolt protrudes.

The longer the handle of the wrench, the more force can be applied to the fastener. One technique is to carry a length of pipe, which can slip over the wrench and act as a handle extender. Do be warned, however, that a sufficiently long pipe can exert enough force to break the wrench or the fastener.

Double-sided open-end wrench
Double-sided box-end wrench

Still, there are times when it is absolutely necessary to release a stuck fastener. It is usually wise first to apply a penetrating lubricant to the fastener, and tap it gently to let the lubricant reach the threads, waiting briefly before applying force. Yet another dangerous but sometimes necessary technique is to hit the handle of the wrench with a hammer; do remember to hit it in the direction in which the fastener needs to turn. Gloves and eye protection are wise precautions when hammering a wrench. An even more desperate expedient is to heat the fastener to expand it, which may destroy the hardness or toughness of the metal. Occasionally, it is possible to chill the piece to which the fastener is attached, contracting it and helping break the adhesion.

For some specialized applications, typically where only authorized persons are to adjust the fastener, the sides of the wrench head may not be parallel. For example, the nuts on fire hydrants are pentagonal, so they cannot be manipulated with a standard wrench shape.

Combination wrench

(CC) Photo: Derek Hodges
A combination wrench
A combination wrench has a one open and one box end, usually of the same size. The open end is more useful when there is limited access to the fastener. Box ends can get a better grip when the flats of the nut are deformed.

Adjustable open wrench

PD Image
Adjustable wrench

An adjustable wrench has one fixed jaw, and one that is adjustable by means of a screw adjustment, usually made in one piece with the adjustable jaw. In the U.S., this is often called a Crescent wrench after the first well-known manufacturer, while it is a Bahco wrench in Dutch usage, after the Swedish manufacturer. The obvious advantage of the adjustable wrench is that an entire set of wrenches need not be carried when the size of the fastener to be adjusted is not known. The disadvantage is that the adjustment can slip, and generally cannot apply as much force as a solid wrench.

It should be mentioned, if mostly to condemn the practice, that pliers are sometimes used to adjust nuts. Most types of pliers, however, do not have parallel jaws, but angled ones. These are apt to deform a nut if heavy pressure is applied.

Pipe wrench

Pipe wrench

Pipe wrenches grasp threaded pipes and turn them, so they do not have flat jaws. One common type has curved jaws, with the wrench designed to slip slightly so it can be repositioned as the pipe moves under it. These were called Stillson wrenches after the inventor; they are sometimes, incorrectly, called monkey wrenches.

Another type does not have jaws, but instead a chain that tensions against the pipe.

Some plumbing fixtures have a nut-like shape molded into the metal, so that a flat-jawed wrench can be used. This is the application intended for the increasingly rare monkey wrench.

Socket wrenches and nutdrivers

Sockets proper are single pieces of cast or machined metal, with one end shaped to slip over the fastener to be manipulated, and the other to receive a driveshaft to turn it. The shaft end may actually have a depression, or even a spring-loaded bearing, to help lock the shaft into place. In combination, the driveshaft and socket are extremely strong in rotation, but should separate easily with linear traction.

Where the English measurement system is used, the shaft diameter is most often 3/8" or 1/4" for general purposes. 1/2", 3/4", and 1" drives are used for heavy equipment. Both metric and English system sockets, however, can snap onto the male end of the shaft.

Adapters are available to convert between shaft sizes. For example, one might have a large nut but only a 1/4" shaft system, so an adapter can allow a 3/8" socket to be used with that shaft.

Basic handle and extension

The most basic driver is a shaft with a handle, much like a screwdriver, but with a socket-mating connector rather than a screwdriver bit. Another very common variant, called an extension, has a male connector that mates with the socket at one end, and a female connector that accepts another socket tool at the other. Multiple extensions can be snapped together for extra length.

Nutdrivers

Nutdrivers are a permanently attached set of socket, driveshaft, and handle. Some nutdrivers have hollow shafts, so bolt length protruding above the nut goes into the hollow and does not interfere with rotation.

Aids to leverage

Most often, however, at the end of the extension away from the socket, a tool to improve the leverage of driving is attached. One such tool is a ratchet, which, at first, looks like an open-ended or box wrench. The male connector, however, is attached to a disk and mechanical components inside the ratchet head. There is a small control that selects the direction (i.e., loosening or tightening) in which the socket is to be moved. Once that control is set, the ratchet moves freely in the other direction, so it can be repositioned easily; it is not necessary to have 360 degree access above the fastener -- just enough working space to move the ratchet handle.

Other ways to improve leverage include various pivoting handles. One type looks like the brace (tool) used to drive hand drills; there is a socket fitting rather than a chuck at the working end. The operator holds a knob, fitted with bearings in which the shaft turns, and cranks a handle.

Another type, called a flex handle, is related to the rachet, but, rather than rotating, the handle pivots 180 degrees so it can be repositioned quickly. A flex handle is simpler, cheaper, and may be able to apply more force than a rachet.

Torque wrenches

A torque wrench is both a fastening tool and a measuring device. It is used where precise measurement of the tightness of a bolt is necessary.

It has been suggested that a quantum mechanical torque wrench can measure either the torque, or find the bolt, but not both.

Spanners (precision)

While a spanner is a general term in British English for "wrench", there is a specialized tool always known as a spanner. It consists of a bar with two or more protruding pins, sometimes adjustable in distance, that fit into corresponding holes in a fastener an allow it to be turned. The bar is connected to a shaft or other mechanism to allow turning, or sometimes the spanner is built not as a bar, but as a pliers-like device with the pins at the work end. Spanners are often used in optical work, on the retaining rings of lens elements.

Power wrenches

Impact wrenches

One of the most common types is a power-operated driver for sockets, the sockets usually made of extra-strong metal. Pneumatically driven impact wrenches are extremely common in the automotive industry; air drive does not generate the sparks that an electric motor could produce, which would be hazardous in the presence of petroleum products.

For other applications, however, electric impact wrenches are increasingly common, especially cordless battery-powered wrenches with great portability. For some heavy applications, the impact energy may be provided by an explosive cartridge.

There are impact wrenches that are hand-powered, but by hitting a specific part with a hammer, allowing great force to be applied.

Power torque wrench

Intended for industrial applications, these are often powered hydraulically, which allows great precision. (Read more...)

Previous Winners

Rules and Procedure

Rules

  • The primary criterion of eligibility for a new draft is that it must have been ranked as a status 1 or 2 (developed or developing), as documented in the History of the article's Metadate template, no more than one month before the date of the next selection (currently every Thursday).
  • Any Citizen may nominate a draft.
  • No Citizen may have nominated more than one article listed under "current nominees" at a time.
  • The article's nominator is indicated simply by the first name in the list of votes (see below).
  • At least for now--while the project is still small--you may nominate and vote for drafts of which you are a main author.
  • An article can be the New Draft of the Week only once. Nominated articles that have won this honor should be removed from the list and added to the list of previous winners.
  • Comments on nominations should be made on the article's talk page.
  • Any draft will be deleted when it is past its "last date eligible". Don't worry if this happens to your article; consider nominating it as the Article of the Week.
  • If an editor believes that a nominee in his or her area of expertise is ineligible (perhaps due to obvious and embarrassing problems) he or she may remove the draft from consideration. The editor must indicate the reasons why he has done so on the nominated article's talk page.

Nomination

See above section "Add New Nominees Here".

Voting

  • To vote, add your name and date in the Supporters column next to an article title, after other supporters for that article, by signing <br />~~~~. (The date is necessary so that we can determine when the last vote was added.)
  • Add your name in the Specialist supporters column only if you are an editor who is an expert about the topic in question. Your vote will be counted as three.
  • You may vote for as many articles as you wish, and each vote counts separately, but you can only nominate one at a time; see above. You could, theoretically, vote for every nominated article on the page, but this would be pointless.

Ranking

  • The list of articles is sorted by number of votes first, then alphabetically.
  • Admins should make sure that the votes are correctly tallied, but anyone may do this. Note that "Specialist Votes" are worth 3 points.

Updating

  • Each Thursday, one of the admins listed below should move the winning article to the Current Winner section of this page, announce the winner on Citizendium-L and update the "previous winning drafts" section accordingly.
  • The winning article will be the article at the top of the list (ie the one with the most votes).
  • In the event of two or more having the same number of votes :
    • The article with the most specialist supporters is used. Should this fail to produce a winner, the article appearing first by English alphabetical order is used.
    • The remaining winning articles are guaranteed this position in the following weeks, again in alphabetical order. No further voting should take place on these, which remain at the top of the table with notices to that effect. Further nominations and voting take place to determine future winning articles for the following weeks.
    • Winning articles may be named New Draft of the Week beyond their last eligible date if their circumstances are so described above.

Administrators

The Administrators of this program are the same as the admins for CZ:Article of the Week.

References

See Also


Citizendium Initiatives
Eduzendium | Featured Article | Recruitment | Subpages | Core Articles | Uncategorized pages |
Requested Articles | Feedback Requests | Wanted Articles
How to Edit
Getting Started Organization Technical Help
Policies Content Policy
Welcome Page