Antiviral drug: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
m (list of drugs moved to catalog subpages)
imported>Robert Badgett
(Organized and added agents that competively bind)
Line 1: Line 1:
{{subpages}}
{{subpages}}
An '''antiviral drug''', or '''antiviral agent''', is a compound that interfers with the [[viral replication cycle|replication cycle]] of [[virus|viruses]].  They can be divided into three non-exclusive categories: [[protease inhibitor]]s, [[anti-metabolite]]s and [[reverse transcriptase inhibitor]]s, based on the ways in which they disrupt viral replication cycles.  While antiviral drugs are intended for systemic use by ingestion or injection of the drug, [[virucide]]s are used exclusively on objects and surfaces and, when possible, topically.  Antiviral drugs are used extensively to treat [[HIV]], [[hepatitis C]], [[herpes]] and other devastating viruses.  The protease inhibitor [[Atazanavir]], popularly known as AZT, was the first widely used treatment for HIV.  
An '''antiviral drug''', or '''antiviral agent''', is a compound that interferes with the [[viral replication cycle|replication cycle]] of [[virus|viruses]].  While antiviral drugs are intended for systemic use by ingestion or injection of the drug, [[virucide]]s are used exclusively on objects and surfaces and, when possible, topically.  Antiviral drugs are used extensively to treat [[HIV]], [[hepatitis C]], [[herpes]] and other devastating viruses.  The protease inhibitor [[Atazanavir]], popularly known as AZT, was the first widely used treatment for HIV.  


==Classification==
They can be divided into three non-exclusive categories: [[protease inhibitor]]s, [[anti-metabolite]]s and [[reverse transcriptase inhibitor]]s, based on the ways in which they disrupt viral replication cycles. In addition some antivirals bind to specific cell-surface receptors and inhibit viral penetration or uncoating.


See [[catalog of antiviral drugs]].
===Protease inhibitors===
[[Protease inhibitor]]s, as the name suggests, inhibit the function of [[protease]] [[enzymes]] created by viruses.  The [[DNA]] or [[RNA]] in viruses are coded to produce large polyproteins, which need to be cleaved into smaller functional proteins by viral proteases before infectious, mature virus particles can be formed.  For example, [[West Nile virus]] and the [[Dengue fever]] virus produce a single polyprotein that must be cleaved into ten separate proteins.  The antiviral drugs [[amprenavir]], [[atazanavir]], [[indinavir]], [[nelfinavir]], [[ritonavir]], [[saquinavir]] and [[tipranavir]] are protease inhibitors.
[[Protease inhibitor]]s, as the name suggests, inhibit the function of [[protease]] [[enzymes]] created by viruses.  The [[DNA]] or [[RNA]] in viruses are coded to produce large polyproteins, which need to be cleaved into smaller functional proteins by viral proteases before infectious, mature virus particles can be formed.  For example, [[West Nile virus]] and the [[Dengue fever]] virus produce a single polyprotein that must be cleaved into ten separate proteins.  The antiviral drugs [[amprenavir]], [[atazanavir]], [[indinavir]], [[nelfinavir]], [[ritonavir]], [[saquinavir]] and [[tipranavir]] are protease inhibitors.


===Anti-metabolites===
[[Anti-metabolite]]s are chemicals that mimic natural biochemical building blocks, and most often are analogs of the nucleotides used to make DNA and RNA.  Anti-metabolites act as DNA or RNA chain terminators during the replication or translation of viral DNA or RNA.  Often, the drugs are missing one of the necessary linkage groups, such as a 3'- or 5'-hydroxyl group in the sugar, so that the drug gets incorporated into new viral RNA or DNA, but the next nucleotide base cannot be added because a linkage group is missing. Anti-metabolites also bind competitively with genuine metabolites in the active sites of the [[polymerases]] that create viral nucleic acids, and thus also slow down production of viral nucleic acids by clogging up the polymerases.


[[Anti-metabolite]]s are chemicals that mimic natural biochemical building blocks, and most often are analogs of the nucleotides used to make DNA and RNA.  Anti-metabolites act as DNA or RNA chain terminators during the replication or translation of viral DNA or RNA.  Often, the drugs are missing one of the necessary linkage groups, such as a 3'- or 5'-hydroxyl group in the sugar, sothat the drug gets incorporated into new viral RNA or DNA, but the next nucleotide base cannot be added because a linkage group is missing. Anti-metabolites also bind competitively with genuine metabolites in the active sites of the [[polymerases]] that create viral nucleic acids, and thus also slow down production of viral nucleic acids by clogging up the polymerases.
===Reverse transcriptase inhibitors===
 
Many of the anti-metabolites are also [[reverse transcriptase inhibitors]] (RTIs).  They inhibit the [[reverse transcriptase]] enzymes by binding to them either irreversibly by forming covalent linkages, or in competition with natural biochemicals.  This class of drugs stops the conversion of viral RNA into DNA.   
Many of the anti-metabolites are also [[reverse transcriptase inhibitors]] (RTIs).  They inhibit the [[reverse transcriptase]] enzymes by binding to them either irreversibly by forming covalent linkages, or in competition with natural biochemicals.  This class of drugs stops the conversion of viral RNA into DNA.   
See [[catalog of antiviral drugs]].


== External Links ==
== External Links ==
Drug Bank at http://www.drugbank.ca/cat_browse.htm#subC10
Drug Bank at http://www.drugbank.ca/cat_browse.htm#subC10
==References==
<references/>

Revision as of 05:26, 10 September 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
 
This editable Main Article is under development and subject to a disclaimer.

An antiviral drug, or antiviral agent, is a compound that interferes with the replication cycle of viruses. While antiviral drugs are intended for systemic use by ingestion or injection of the drug, virucides are used exclusively on objects and surfaces and, when possible, topically. Antiviral drugs are used extensively to treat HIV, hepatitis C, herpes and other devastating viruses. The protease inhibitor Atazanavir, popularly known as AZT, was the first widely used treatment for HIV.

Classification

They can be divided into three non-exclusive categories: protease inhibitors, anti-metabolites and reverse transcriptase inhibitors, based on the ways in which they disrupt viral replication cycles. In addition some antivirals bind to specific cell-surface receptors and inhibit viral penetration or uncoating.

See catalog of antiviral drugs.

Protease inhibitors

Protease inhibitors, as the name suggests, inhibit the function of protease enzymes created by viruses. The DNA or RNA in viruses are coded to produce large polyproteins, which need to be cleaved into smaller functional proteins by viral proteases before infectious, mature virus particles can be formed. For example, West Nile virus and the Dengue fever virus produce a single polyprotein that must be cleaved into ten separate proteins. The antiviral drugs amprenavir, atazanavir, indinavir, nelfinavir, ritonavir, saquinavir and tipranavir are protease inhibitors.

Anti-metabolites

Anti-metabolites are chemicals that mimic natural biochemical building blocks, and most often are analogs of the nucleotides used to make DNA and RNA. Anti-metabolites act as DNA or RNA chain terminators during the replication or translation of viral DNA or RNA. Often, the drugs are missing one of the necessary linkage groups, such as a 3'- or 5'-hydroxyl group in the sugar, so that the drug gets incorporated into new viral RNA or DNA, but the next nucleotide base cannot be added because a linkage group is missing. Anti-metabolites also bind competitively with genuine metabolites in the active sites of the polymerases that create viral nucleic acids, and thus also slow down production of viral nucleic acids by clogging up the polymerases.

Reverse transcriptase inhibitors

Many of the anti-metabolites are also reverse transcriptase inhibitors (RTIs). They inhibit the reverse transcriptase enzymes by binding to them either irreversibly by forming covalent linkages, or in competition with natural biochemicals. This class of drugs stops the conversion of viral RNA into DNA.

External Links

Drug Bank at http://www.drugbank.ca/cat_browse.htm#subC10

References