Animal: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Joshua Choi
imported>Joshua Choi
No edit summary
Line 63: Line 63:
}}
}}


The '''animals''' (from the Latin ''animale'' and ''anima'', meaning "vital breath") are those [[organism]]s classified into the [[kingdom (biology)|kingdom]] '''Animalia'''. Together they make up a wide segment of [[life]] and include an incredibly diverse array of both familiar and strange creatures, ranging from [[hawk]]s to [[human]]s and [[sea slug]]s to [[spider]]s. Nonetheless, they all share certain characteristics: all animals are [[multicellularity|multicellular]] [[eukaryote]]s and also [[heterotrophism|ingest their food]] and [[locomotion|move]] by their own power at some point in their [[life cycle]]. Animals are essential [[consumer]]s in many [[ecosystem]]s and many are also important in [[human]] [[society|societies]] and [[economy|economies]].<ref name=Freeman2008>Freeman, S (2008) ''Biological Science'', Third Edition ISBN 0-555-00399-X</ref>
The '''animals''' (from the Latin ''animale'' and ''anima'', meaning "vital breath") are those [[organism]]s classified into the [[kingdom (biology)|kingdom]] '''Animalia'''. Together they make up a wide segment of [[life]] and include an incredibly diverse array of both familiar and strange creatures, ranging from [[hawk]]s to [[human]]s and [[sea slug]]s to [[spider]]s. Nonetheless, they all share certain characteristics: all animals are [[multicellularity|multicellular]] [[eukaryote]]s and also [[heterotrophism|ingest their food]] and [[locomotion|move]] by their own power at some point in their [[life cycle]]. Animals are essential [[consumer]]s in many [[ecosystem]]s and many are also important in [[human]] [[society|societies]] and [[economy|economies]].


==Characteristics==
==Characteristics==


===Cells and tissues===
===Cells and tissues===
Animals are [[eukaryotic]], meaning that they are comprised of [[cell]]s which contain a [[nucleus]]. Unlike [[plant]]s and [[fungi]], their cells lack [[cell wall]]s. Unlike [[bacteria]], [[archaea]] and most [[protist]]s, they are also multicellular: their bodies are made of many cells attached to one another.<ref name=Freeman2008 />
Like [[plants]] and [[fungi]], all animals are [[eukaryotic]]: they are comprised of [[cell]]s which contain a [[nucleus]]. However, their cells lack [[cell wall]]s that surround the cells of plants and fungi. Unlike [[bacteria]], [[archaea]] and most [[protist]]s, they are also multicellular: their bodies are made of many cells attached to one another.


Animal cells are organized into specialized, integrated structures called [[tissues]], which may in turn be organized into [[organ]]s. Common to all animals is [[epithelium]], a protective tissue covering their surfaces.<ref name=Freeman2008 /> Many animals also share other structures such as [[gut]]s ([[chambers]] with one or more openings for [[digestion]]), [[muscle]]s (organs which contract for [[locomotion]]), and [[nerve]]s (tissues which transmit signals between cells).
Animal cells are organized into specialized, integrated arrangements called [[tissues]], which may in turn be organized into larger structures called [[organ]]s. All animals have a tissue type called [[epithelium]], a protective layer of cells covering their bodies' surfaces.<ref name=Freeman2008>Freeman, S (2008) ''Biological Science'', Third Edition ISBN 0-555-00399-X</ref> Many animals also share other structures such as [[gut]]s ([[chambers]] with one or more openings for [[digestion]]), [[muscle]]s (organs which contract for [[locomotion]]), and [[nerve]]s (tissues which transmit signals between cells).


In addition, animals may be grouped by the number of [[germ layer|tissue layers]] their [[embryo]]s have. [[Sponge]]s have but one, while [[diploblast]]s have two and [[triploblast]]s have three. In diploblasts and triploblasts, the inner layer is called the [[endoderm]] (which develops into the [[gut]] and associated tissue) and the outer layer is called the [[ectoderm]] (which develops into [[skin]] and the [[nervous system]]). Triploblasts also have a layer in between called the [[mesoderm]], which develops into many internal organs such as the [[circulatory system]], [[muscle]], and [[bone]].<ref name=Freeman2008 />
All of an animal's tissues originally develop from one, two, or three [[germ layer|tissue layers]] in the [[embryo]] stage, depending what kind of animal it be. [[Sponge]] embryos have but one layer, while [[diploblast]]s have two and [[triploblast]]s have three. In diploblasts and triploblasts, the inner layer is called the [[endoderm]] (which develops into the [[gut]] and associated tissue) and the outer layer is called the [[ectoderm]] (which develops into [[skin]] and the [[nervous system]]). Triploblasts also have a layer in between called the [[mesoderm]], which develops into many internal organs such as the [[circulatory system]], [[muscle]], and [[bone]].


===Food and energy===
===Food and energy===
{{Image|Ants and aphids.jpg|left|350px|In one of the many unique ways animals obtain food, [[rancher ant]]s drink sugary juice from [[aphid]]s in return for the aphids' protection.}}
{{Image|Ants and aphids.jpg|left|350px|In one of the many unique ways animals obtain food, [[rancher ant]]s drink sugary juice from [[aphid]]s in return for the aphids' protection.}}
Animals are [[heterotroph]]s: they obtain nutrients by ingesting [[food]] from outside, generally [[digestion|digesting]] food in an [[internal digestion|internal chamber]]. This separates them from plants, algae, and other [[autotroph]]s, which do not ingest food. They are [[consumers]] that often occupy the higher levels of [[food chain]]s in many [[ecosystems]].<ref name=Freeman2008 /> They obtain their food in a dazzling array of methods: for instance, [[rancher ant]]s tend [[aphid]]s and harvest the [[sugar]] that they secrete. <ref>Walker J (2003) "Animal Magnetism: Aphid-Ranching Ants" [http://www.fourmilab.ch/images/animal_magnetism/fourmis_pucerons.html]</ref>
Another trait common to all animals is that they are [[heterotroph]]s: they obtain nutrients by ingesting [[food]] from outside, generally [[digestion|digesting]] food in an [[internal digestion|internal chamber]]. This separates them from plants, algae, and other [[autotroph]]s, which do not ingest food. They are [[consumers]] that often occupy the higher levels of [[food chain]]s in many [[ecosystems]].<ref name=Freeman2008 /> They obtain their food in a dazzling array of methods: for instance, [[rancher ant]]s tend [[aphid]]s and harvest the [[sugar]] that they secrete. <ref>Walker J (2003) "Animal Magnetism: Aphid-Ranching Ants" [http://www.fourmilab.ch/images/animal_magnetism/fourmis_pucerons.html]</ref>


====Methods of obtaining food====
Animals obtain food in many ways, but most can be grouped into two types. The first, [[predation]] is a [[biological interaction]] where a heterotroph, called the predator, obtains food by consuming the cells of another organism, called the prey. Predators are further split into three groups. [[Herbivore]]s are predators that primarily consume autotrophs, [[carnivore]]s are predators that primarily consume heterotrophs, and [[omnivore]]s are predators that consume both autotrophs and heterotrophs.
Animals obtain food in many ways, but most can be grouped into two types. The first, [[predation]] is a [[biological interaction]] where a heterotroph, called the predator, obtains food by consuming the cells of another organism, called the prey. [[Herbivore]]s are predators that primarily consume autotrophs, [[carnivore]]s are predators that primarily consume heterotrophs, and omnivores are predators that consume both autotrophs and heterotrophs.


Many animals also practice [[detritivory]], where a heterotroph consumes food from [[detritus]]: dead [[organic matter]]. Like the [[fungi]] and [[bacteria]], detritivore animals recycle nutrients and are thus important in [[decomposition]].
Many animals also practice [[detritivory]], where an animal consumes food from [[detritus]]: dead [[organic matter]]. Like detritivore [[bacteria]] and [[fungi]], detritivore animals recycle nutrients and are thus important in [[decomposition]].


====Methods of feeding====
The ways that animals [[feeding|feed]] on the food they obtain may be grouped into four general tactics. [[Suspension feeding]], or [[filter feeding]], filters out and concentrates food particles suspended in [[water]] or [[air]], such as a [[baleen whale]] filtering out [[plankton]]. [[Deposit feeding]] swallows a [[substrate]] and ingests the [[microorganism]]s, [[detritus]], and other cells within the substrate, such as an [[earthworm]] eats through [[soil]]. [[Fluid feeding]] sucks fluids such as [[body fluid]]s from plants and animals, such as a [[butterfly]] drinking a [[flower]]'s [[nectar]]. [[Mass feeding]], or [[bulk feeding]], eats chunks of flesh from prey into the [[mouth]], such as a [[snail]] eating pieces of [[leaves]]. <ref name=Freeman2008 />
The methods of [[feeding]] that animals use may be grouped into four general tactics. [[Suspension feeding]], or [[filter feeding]], filters out and concentrates food particles suspended in [[water]] or [[air]], such as a [[baleen whale]] filtering out [[plankton]]. [[Deposit feeding]] swallows a [[substrate]] and ingests the [[microorganism]]s, [[detritus]], and other cells within the substrate, such as an [[earthworm]] eats through [[soil]]. [[Fluid feeding]] sucks fluids such as [[body fluid]]s from plants and animals, such as a [[butterfly]] drinking a [[flower]]'s [[nectar]]. [[Mass feeding]], or [[bulk feeding]], eats chunks of flesh from prey into the [[mouth]], such as a [[snail]] eating pieces of [[leaves]]. <ref name=Freeman2008 />


===Body plan===
===Body plan===


====Symmetry and cephalization====
====Symmetry and cephalization====
Animals, like other multicellular organisms, can be classified on their [[symmetry]]: are they symmetrical on zero, one, two, or more planes? The [[sponge]]s are completely asymmetrical, but every other animal is symmetrical in at least one plane. Organisms symmetrical on more than two planes are radially symmetrical; they appear like the spokes of a [[bicycle]] [[wheel]], and most alive today float in [[water]] or attach to [[substrates]]. Organisms with only one plane are bilaterally symmetrical; they have left and right sides and two ends, and they tend to possess longer and narrower bodies.<ref name=Freeman2008 />
Animals, like other multicellular organisms, can be classified on their [[symmetry]]: are they symmetrical on zero, one, two, or more planes? The [[sponge]]s are completely asymmetrical, but every other animal is symmetrical in at least one plane. Organisms symmetrical on more than two planes are radially symmetrical; they appear like the spokes of a bicycle wheel, and most alive today float in [[water]] or attach to [[substrates]]. Organisms with only one plane are bilaterally symmetrical; they have left and right sides and two ends, and they tend to possess longer and narrower bodies.


Bilateral symmetry in animals also exhibit [[cephalization]]: the development a [[head]] on one end where feeding, sensory, and processing organs are concentrated. Bilateral symmetry and cephalization are both pervasive in animals, and it is thought that they enabled animals to more actively move and [[hunting|hunt]].
Bilateral symmetry in animals also exhibit [[cephalization]]: the development a [[head]] on one end where feeding, sensory, and processing organs are concentrated. Bilateral symmetry and cephalization are both pervasive in animals, and it is thought that they enabled animals to more actively move and [[hunting|hunt]]. <ref name=Freeman2008 />


====Guts and body cavities====
====Guts and body cavities====

Revision as of 11:18, 30 March 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
 
This editable, developed Main Article is subject to a disclaimer.
Animals
This grey nurse shark (Carcharias taurus) and the smaller fish surrounding it are animals.
This grey nurse shark (Carcharias taurus) and the smaller fish surrounding it are animals.
Scientific classification
Domain: Neomura
Kingdom: Opisthokonta
Subkingdom: Metazoa
Phyla

Infrakingdom Eumetazoa

The animals (from the Latin animale and anima, meaning "vital breath") are those organisms classified into the kingdom Animalia. Together they make up a wide segment of life and include an incredibly diverse array of both familiar and strange creatures, ranging from hawks to humans and sea slugs to spiders. Nonetheless, they all share certain characteristics: all animals are multicellular eukaryotes and also ingest their food and move by their own power at some point in their life cycle. Animals are essential consumers in many ecosystems and many are also important in human societies and economies.

Characteristics

Cells and tissues

Like plants and fungi, all animals are eukaryotic: they are comprised of cells which contain a nucleus. However, their cells lack cell walls that surround the cells of plants and fungi. Unlike bacteria, archaea and most protists, they are also multicellular: their bodies are made of many cells attached to one another.

Animal cells are organized into specialized, integrated arrangements called tissues, which may in turn be organized into larger structures called organs. All animals have a tissue type called epithelium, a protective layer of cells covering their bodies' surfaces.[1] Many animals also share other structures such as guts (chambers with one or more openings for digestion), muscles (organs which contract for locomotion), and nerves (tissues which transmit signals between cells).

All of an animal's tissues originally develop from one, two, or three tissue layers in the embryo stage, depending what kind of animal it be. Sponge embryos have but one layer, while diploblasts have two and triploblasts have three. In diploblasts and triploblasts, the inner layer is called the endoderm (which develops into the gut and associated tissue) and the outer layer is called the ectoderm (which develops into skin and the nervous system). Triploblasts also have a layer in between called the mesoderm, which develops into many internal organs such as the circulatory system, muscle, and bone.

Food and energy

(CC) Photo: Kenny Murray
In one of the many unique ways animals obtain food, rancher ants drink sugary juice from aphids in return for the aphids' protection.

Another trait common to all animals is that they are heterotrophs: they obtain nutrients by ingesting food from outside, generally digesting food in an internal chamber. This separates them from plants, algae, and other autotrophs, which do not ingest food. They are consumers that often occupy the higher levels of food chains in many ecosystems.[1] They obtain their food in a dazzling array of methods: for instance, rancher ants tend aphids and harvest the sugar that they secrete. [2]

Animals obtain food in many ways, but most can be grouped into two types. The first, predation is a biological interaction where a heterotroph, called the predator, obtains food by consuming the cells of another organism, called the prey. Predators are further split into three groups. Herbivores are predators that primarily consume autotrophs, carnivores are predators that primarily consume heterotrophs, and omnivores are predators that consume both autotrophs and heterotrophs.

Many animals also practice detritivory, where an animal consumes food from detritus: dead organic matter. Like detritivore bacteria and fungi, detritivore animals recycle nutrients and are thus important in decomposition.

The ways that animals feed on the food they obtain may be grouped into four general tactics. Suspension feeding, or filter feeding, filters out and concentrates food particles suspended in water or air, such as a baleen whale filtering out plankton. Deposit feeding swallows a substrate and ingests the microorganisms, detritus, and other cells within the substrate, such as an earthworm eats through soil. Fluid feeding sucks fluids such as body fluids from plants and animals, such as a butterfly drinking a flower's nectar. Mass feeding, or bulk feeding, eats chunks of flesh from prey into the mouth, such as a snail eating pieces of leaves. [1]

Body plan

Symmetry and cephalization

Animals, like other multicellular organisms, can be classified on their symmetry: are they symmetrical on zero, one, two, or more planes? The sponges are completely asymmetrical, but every other animal is symmetrical in at least one plane. Organisms symmetrical on more than two planes are radially symmetrical; they appear like the spokes of a bicycle wheel, and most alive today float in water or attach to substrates. Organisms with only one plane are bilaterally symmetrical; they have left and right sides and two ends, and they tend to possess longer and narrower bodies.

Bilateral symmetry in animals also exhibit cephalization: the development a head on one end where feeding, sensory, and processing organs are concentrated. Bilateral symmetry and cephalization are both pervasive in animals, and it is thought that they enabled animals to more actively move and hunt. [1]

Guts and body cavities

Animals may possess a gut. A gut is often described as a "tube with a tube": a long tube or chamber running through the body with one or more openings that can take in whatever food the animal consumes and digest it. The first opening, the gut's intake, is called the animal's mouth. If a gut has a second opening, on the other end of the tube, the opening is called an anus, and it is where remaining, undigested food is ejected. In radially symmetrical animals, the mouth is often found in the center. In bilaterally symmetrical animals, the mouth is usually in the head, nearby the animal's sensory organs, and the anus is likewise found on the opposite end of the head. Animals with only a mouth have a two-way gut (also called a blind gut), because food and waste must use the same opening. Animals with both mouths and anuses have a one-way gut, which can more efficiently process food and absorb nutrients.

Animals may also contain fluid-filled cavities inside their bodies, in which the gut and other organs may float. The cavity is called a either a coelom or pseudocoelom, depending on how it is sealed. enables an animal's internal organs to move independently in it, oxygen and nutrients to circulate within it, and an animal to move without limbs as a hydrostatic skeleton. Animals are often grouped by what kind of body cavity they have. Animals with coeloms are called coelomates, animals with pseudocoeloms are called pseudocoelomates, and animals that do not have any enclosed body cavity are called acoelomates.[1]

Movement

Animals are motile during at least one point of their life cycle. They move by a large variety of methods: swimming, crawling on a substrate, walking, or flying.[1]

Reproduction and life cycle

Origin and phylogeny

File:Animal phylogeny poster.jpg
(CC) Photo: Colin Purrington
Stylized poster of the phylogeny of animals.

Animals are a clade, which means that all animals are linked through one common ancestor. A group of protists called the choanoflagellates are the closest living relatives to animals. In the past decades, molecular phylogeny has dramatically increased our understanding of the relationships among the many lineages of animals. Below is a summary of our current knowledge of the phylogeny of animals and how we group them to make sense of their bewildering diversity.

  • The Porifera (sponges) of today are the closest, most basal animal phylum to the choanoflagellates and the first group among the surviving animals to separate from the rest. Like all animals, they possess multicellularity and epithelia, but are otherwise very different from the other animals below.
  • True tissues, diploblasty, and symmetry separate the other animals from the sponges. First up are the two phyla Cnidaria (jellyfish and sea anemones) and Ctenophora (comb jellies) contain animals that are radially symmetric and diploblastic.
  • Eventually, some animal lineage developed bilateral symmetry, cephalization, and triploblasty. The animals descended from that lineage form a large group, called Bilateria.
  • The most ancient groups in Bilateria comprise the Acoelmorpha (small, gutless worms). These animals lack coeloms, which suggest the first bilateral animals developed from simple guts to complex coeloms.
  • The other animals in Bilateria split into two clades: the protostomes and the deuterostomes. These two groups have some fundamental differences, especially in how their embryos develop. They are both described in more detail below.

Protostomes

The protostomes, all descended from one ancestor, can be distinguished by how their embryos form in a spiral.

Deuterostomes

References

Citations

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Freeman, S (2008) Biological Science, Third Edition ISBN 0-555-00399-X
  2. Walker J (2003) "Animal Magnetism: Aphid-Ranching Ants" [1]