Revision as of 00:20, 29 October 2008 by imported>Dmitrii Kouznetsov
Exponential function or exp, can be defined as solution of differential equaiton
![{\displaystyle \exp ^{\prime }(z)=\exp(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61da01ebe27f04128076482661f1b750421009f9)
with additional condition
![{\displaystyle \exp(0)=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8cef12440a3f192bc8a9a29ae266c225dac6151c)
Exponential function is believed to be invented by Leonarf Euler some centuries ago.
Since that time, it is widely used in technology and science; in particular, the exponential growth
is described with such function.
Properties
exp is entire function.
For any comples
and
, the basic property holds:
![{\displaystyle \exp(a)~\exp(b)=\exp(a+b)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02d3dad6df902f970e5e988ede7a2863e97b50f4)
The definition allows to calculate all the derrivatives at zero; so, the Tailor expansion has form
![{\displaystyle \exp(z)=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}~~\forall z\in \mathbb {C} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f1eeb99b9d9663dbc15bacf10a5900bd6fa80e9)
where
means the set of complex numbers.
The series converges for and complex
. In particular, the series converge for any real value of the argument.
Inverse function
Inverse function of the exponential is logarithm; for any complex
, the relation holds:
![{\displaystyle \exp(\log(z))=z~\forall z\in \mathbb {C} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/8696f10a11c93ad49ba2645b2bb459fbf08708e0)
Exponential also can be considered as inverse of logarithm, while the imaginary part of the argument is smaller than
:
![{\displaystyle \log(\exp(z))=z~\forall z\in \mathbb {C} ~\mathrm {~such~that~} |\Im (z)|<\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d39c3b6d020d88109e26491f37c496484e0ec143)
While lofarithm has cut at the negative part of the real axis, exp can be considered
Number e
is widely used in applications; this notation is commonly accepted. Its approximate value is
- Failed to parse (syntax error): {\displaystyle {\rm e}=\exp(1) \approx 2.71828 18284 59045 23536}
Relation with sin and cos functions
![{\displaystyle \exp(\mathrm {i} z)=\cos(z)+\mathrm {i} \sin(z)~\forall z\in \mathbb {C} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/52909a1c896492896e42477ba98d27d7eb5130af)
Generalization of exponential
Notation
is used for the exponential with modified argument;
![{\displaystyle \exp _{b}(z)=b^{z}=\exp(\log(b)z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab0a23fde5858bd33068902af1eee3e085a55a3f)
Notation
is used for the iterated exponential:
![{\displaystyle \exp _{b}^{0}(z)=z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29c2dd9930bab5a29cb47a8fc717cec6f59d2c4a)
![{\displaystyle \exp _{b}^{1}(z)=\exp _{b}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdbbf2c7d486afc0e15546f7121b6605d5bf49e)
![{\displaystyle \exp _{b}^{2}(z)=\exp _{b}(\exp _{b}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dcfda923af10ed3d054af63915ff6e66f594b0ff)
![{\displaystyle \exp _{b}^{c+1}(z)=\exp _{b}(\exp _{b}^{c}(z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e6f4e4a43efa9f1d2f72b9c8909673dc4b90da7)
For non-integer values of
, the iterated exponential can be defined as
![{\displaystyle \exp _{b}^{c}(z)=\mathrm {sexp} _{b}{\Big (}c+{\mathrm {sexp} _{b}}^{-1}(z){\Big )}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fdbbd4f1dc6ef11738339891a2e560ce1d12fbb3)
where
is function
satisfuing conditions
![{\displaystyle F(z+1)=\exp _{b}(F(z))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d9a722cebe4bd6701786076cf95548b43998f309)
![{\displaystyle F(0)=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe64b0aee8c3456f57db4924b822de6538b4489)
![{\displaystyle F(z)~\mathrm {~is~holomorphic~and~bounded~in~the~range} ~|\Re (z)|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72e59b208a03d91966f8584455d48d2d7e7090cf)
The inverse function is defined with condition
![{\displaystyle F{\Big (}F^{-1}(z){\Big )}=z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90ba48467ad50b4c848dd44c2d891967a4fe11cc)
and, within some range of values of
![{\displaystyle F^{-1}{\Big (}F(z){\Big )}=z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1154ded761447f9ce1ca9975d402f34638675bde)