Molar gas constant

From Citizendium
Revision as of 10:50, 19 January 2012 by imported>Milton Beychok (The correct the latest R value to thew 2010 value given on the NIST website)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Values of R Units
8.3144621 J·K-1·mol-1
0.082057 L·atm·K-1·mol-1
8.205745 × 10-5 m3·atm·K-1·mol-1
8.3144621 L·kPa·K-1·mol-1
8.3144621 m3·Pa·K-1·mol-1
62.36367 mmHg·K-1·mol-1
62.36367 torr·K-1·mol-1
83.144621 L·mbar·K-1·mol-1
10.7316 ft3·psi· °R-1·lb-mol-1
0.73024 ft3·atm·°R-1·lb-mol-1

In chemistry, chemical engineering and physics, the molar gas constant (also called universal gas constant) R is a fundamental physical constant which appears in a large number of fundamental equations in the physical sciences, such as the ideal gas law and other equations of state and the Nernst equation. It is equivalent to the the Boltzmann constant (kB) times Avogadro's constant (N): R = kBNA.

Currently its most accurate value is:[1]

R = 8.3144621 J · K-1 · mol-1

The gas constant occurs in the ideal gas law as follows:

where:

P is the gas absolute pressure
T is the gas absolute temperature
V is the volume the gas occupies
n is the number of moles of gas
Vm is the molar volume

Notation for the gas constant

The gas constant defined in this article is the universal gas constant, , that applies to any gas. There is also a specific gas constant, which can be denoted as . The specific gas constant is defined as where is the molecular weight.

Unfortunately, many authors in the technical literature sometimes use as the specific gas constant without denoting it as such or stating that it is the specific gas constant. This can and does lead to confusion for many readers.

Reference

  1. Molar gas constant Obtained on January 19, 2012 from the NIST website