Black-body radiation
Planck's blackbody equation describes the spectral exitance of an ideal blackbody.
where:
Symbol | Units | Description |
---|---|---|
Input wavelength | ||
Input temperature | ||
Planck's constant | ||
Speed of light in vacuum | ||
Boltzmann constant |
Note that the input is in meters and that the output is a spectral irradiance in . Omitting the term from the numerator gives the blackbody emission in terms of radiance, with units where "sr" is steradians. There is a different formulation of the Planck equation in terms of frequency.
Taking the first derivative leads to the wavelength with maximum exitance. This is known as the Wien Displacement Law.
A closed form solution exists for the integral of the Planck blackbody equation over the entire spectrum. This is the Stefan-Boltzmann equation. In general, there is no known closed-form solution for the definite integral of the Planck blackbody equation; numerical integration techniques must be used.
The relationship between the ideal blackbody exitance and the actual exitance of a surface is given by emissivity.
An ideal blackbody at 300K (~30 Celsius) has a peak emission 9.66 microns. It has virtually no self-emission before 2.5 microns, hence self-emission is typically associated with the "thermal" regions of the EM spectrum. However, the Sun has a peak emission around 0.49 microns which is in the visible region of spectrum.
The Planck equation has a single maximum. The wavelength with peak exitance becomes smaller as temperature increases. The total exitance increases with temperature.