Closure (topology): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
m (link fix)
imported>Subpagination Bot
m (Add {{subpages}} and remove any categories (details))
Line 1: Line 1:
In [[mathematics]], the '''closure''' of a subset ''A'' of a [[topological space]] ''X'' is the set union of ''A'' and ''all'' its [[topological space#Some topological notions|limit points]] in ''X''. It is usually denoted by <math>\overline{A}</math>. Other equivalent definitions of the closure of A are as the smallest [[closed set]] in ''X'' containing ''A'', or the intersection of all closed sets in ''X'' containing ''A''.
{{subpages}}


[[Category:Mathematics_Workgroup]]
In [[mathematics]], the '''closure''' of a subset ''A'' of a [[topological space]] ''X'' is the set union of ''A'' and ''all'' its [[topological space#Some topological notions|limit points]] in ''X''. It is usually denoted by <math>\overline{A}</math>. Other equivalent definitions of the closure of A are as the smallest [[closed set]] in ''X'' containing ''A'', or the intersection of all closed sets in ''X'' containing ''A''.
[[Category:CZ Live]]

Revision as of 05:09, 26 September 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the closure of a subset A of a topological space X is the set union of A and all its limit points in X. It is usually denoted by . Other equivalent definitions of the closure of A are as the smallest closed set in X containing A, or the intersection of all closed sets in X containing A.