Solid harmonics: Difference between revisions
imported>Paul Wormer (References moved and extended) |
imported>Paul Wormer (→Addition theorems: Added connection between regular and irregular) |
||
Line 36: | Line 36: | ||
</math> | </math> | ||
(and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations. | (and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations. | ||
==Connection between regular and irregular solid harmonics== | |||
From the definitions follows immediately that | |||
:<math> | |||
I^m_\ell(\mathbf{r})= \frac{R^m_{\ell}(\mathbf{r})}{r^{2\ell+1}} | |||
</math> | |||
A more interesting relationship follows from the observation that the regular solid harmonics are [[homogeneous polynomials]] in the components ''x'', ''y'', and ''z'' of '''r'''. We can replace these components by the corresponding components of the gradient operator ∇. Thus, the left hand side in the following equation is well-defined: | |||
:<math> | |||
R^m_\ell(\mathbf{\nabla})\; \frac{1}{r} = (-1)^\ell \frac{(2\ell)!}{2^\ell \ell!}\;I^m_\ell(\mathbf{r}), \qquad r\ne 0. | |||
</math> | |||
For a proof see Biedenharn and Louck (1981), p. 312. | |||
<!-- | |||
<ref>L. C. Biedenharn and J. D. Louck, ''Angular Momentum in Quantum Physics'', volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading (1981)</ref>. | |||
--> | |||
==Addition theorems== | ==Addition theorems== |
Revision as of 02:29, 20 August 2007
In mathematics, solid harmonics are defined as solutions of the Laplace equation in spherical polar coordinates. There are two kinds of solid harmonic functions: the regular solid harmonics , which vanish at the origin and the irregular solid harmonics , which have an 1/rl+1 singularity at the origin. Both sets of functions play an important role in potential theory. Regular solid harmonics appear in chemistry in the form of s, p, d, etc. orbitals and in physics as multipoles.
Derivation, relation to spherical harmonics
Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, we can write the Laplace equation in the following form
where L2 is the square of the orbital angular momentum,
It is known that spherical harmonics Yml are eigenfunctions of L2,
Substitution of Φ(r) = F(r) Yml into the Laplace equation gives, after dividing out the spherical harmonic function, the following radial equation and its general solution,
The particular solutions of the total Laplace equation are regular solid harmonics:
and irregular solid harmonics:
Racah's normalization (also known as Schmidt's semi-normalization) is applied to both functions
(and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations.
Connection between regular and irregular solid harmonics
From the definitions follows immediately that
A more interesting relationship follows from the observation that the regular solid harmonics are homogeneous polynomials in the components x, y, and z of r. We can replace these components by the corresponding components of the gradient operator ∇. Thus, the left hand side in the following equation is well-defined:
For a proof see Biedenharn and Louck (1981), p. 312.
Addition theorems
The translation of the regular solid harmonic gives a finite expansion,
where the Clebsch-Gordan coefficient is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle = {\ell+m \choose \lambda+\mu}^{1/2} {\ell-m \choose \lambda-\mu}^{1/2} {2\ell \choose 2\lambda}^{-1/2}. }
The similar expansion for irregular solid harmonics gives an infinite series,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I^m_\ell(\mathbf{r}+\mathbf{a}) = \sum_{\lambda=0}^\infty\binom{2\ell+2\lambda+1}{2\lambda}^{1/2} \sum_{\mu=-\lambda}^\lambda R^\mu_{\lambda}(\mathbf{r}) I^{m-\mu}_{\ell+\lambda}(\mathbf{a})\; \langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle }
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r| \le |a|\,} . The quantity between pointed brackets is again a Clebsch-Gordan coefficient,
Real form
By a simple linear combination of solid harmonics of ±m these functions are transformed into real functions. The real regular solid harmonics, expressed in Cartesian coordinates, are homogeneous polynomials of order l in x, y, z. The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical atomic orbitals and real multipole moments. The explicit Cartesian expression of the real regular harmonics will now be derived.
Linear combination
We write in agreement with the earlier definition
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_\ell^m(r,\theta,\varphi) = (-1)^{(m+|m|)/2}\; r^\ell \;\Theta_{\ell}^{|m|} (\cos\theta) e^{im\varphi}, \qquad -\ell \le m \le \ell, }
with
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Theta_{\ell}^m (\cos\theta) \equiv \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \,\sin^m\theta\, \frac{d^m P_\ell(\cos\theta)}{d\cos^m\theta}, \qquad m\ge 0, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\ell(\cos\theta)} is a Legendre polynomial of order l. The m dependent phase is known as the Condon-Shortley phase.
The following expression defines the real regular solid harmonics:
and for m = 0:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_\ell^{0} \equiv R_\ell^{0} . }
Since the transformation is by a unitary matrix the normalization of the real and the complex solid harmonics is the same.
z-dependent part
Upon writing u = cos θ the mth derivative of the Legendre polynomial can be written as the following expansion in u
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^m P_\ell(u)}{du^m} = \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} \gamma^{(m)}_{\ell k}\; u^{\ell-2k-m} }
with
Since z = r cosθ it follows that this derivative, times an appropriate power of r, is a simple polynomial in z,
(x,y)-dependent part
Consider next, recalling that x = r sinθcosφ and y = r sinθsinφ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^m \sin^m\theta \cos m\varphi = \frac{1}{2} \left[ (r \sin\theta e^{i\varphi})^m + (r \sin\theta e^{-i\varphi})^m \right] = \frac{1}{2} \left[ (x+iy)^m + (x-iy)^m \right] }
Likewise
Further
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y) \equiv \frac{1}{2} \left[ (x+iy)^m + (x-iy)^m \right]= \sum_{p=0}^m {m\choose p} x^p y^{m-p} \cos (m-p) \frac{\pi}{2} }
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y) \equiv \frac{1}{2i} \left[ (x+iy)^m - (x-iy)^m \right]= \sum_{p=0}^m {m\choose p} x^p y^{m-p} \sin (m-p) \frac{\pi}{2}. }
In total
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^m_\ell(x,y,z) = \left[\frac{(2-\delta_{m0}) (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z)\;A_m(x,y),\qquad m=0,1, \ldots,\ell }
List of lowest functions
We list explicitly the lowest functions up to and including l = 5 . Here
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} \bar{\Pi}^0_0 = & 1 & \bar{\Pi}^1_3 = & \frac{1}{4}\sqrt{6}(5z^2-r^2) & \bar{\Pi}^4_4 = & \frac{1}{8}\sqrt{35} \\ \bar{\Pi}^0_1 = & z & \bar{\Pi}^2_3 = & \frac{1}{2}\sqrt{15}\; z & \bar{\Pi}^0_5 = & \frac{1}{8}z(63z^4-70z^2r^2+15r^4) \\ \bar{\Pi}^1_1 = & 1 & \bar{\Pi}^3_3 = & \frac{1}{4}\sqrt{10} & \bar{\Pi}^1_5 = & \frac{1}{8}\sqrt{15} (21z^4-14z^2r^2+r^4) \\ \bar{\Pi}^0_2 = & \frac{1}{2}(3z^2-r^2) & \bar{\Pi}^0_4 = & \frac{1}{8}(35 z^4-30 r^2 z^2 +3r^4 ) & \bar{\Pi}^2_5 = & \frac{1}{4}\sqrt{105}(3z^2-r^2)z \\ \bar{\Pi}^1_2 = & \sqrt{3}z & \bar{\Pi}^1_4 = & \frac{\sqrt{10}}{4} z(7z^2-3r^2) & \bar{\Pi}^3_5 = & \frac{1}{16}\sqrt{70} (9z^2-r^2) \\ \bar{\Pi}^2_2 = & \frac{1}{3}\sqrt{3} & \bar{\Pi}^2_4 = & \frac{1}{4}\sqrt{5}(7z^2-r^2) & \bar{\Pi}^4_5 = & \frac{3}{8}\sqrt{35} z \\ \bar{\Pi}^0_3 = & \frac{1}{2} z(5z^2-3r^2) & \bar{\Pi}^3_4 = & \frac{1}{4}\sqrt{70}\;z & \bar{\Pi}^5_5 = & \frac{3}{16}\sqrt{14} \\ \end{matrix} }
The lowest functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y)\,} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y)\,} are:
m Am Bm 0 1 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,} 2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-y^2\,} 3 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^2y -y^3\, } 4 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4 - 6x^2 y^2 +y^4\,} 5 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^5-10x^3y^2+ 5xy^4\, }
Examples
Thus, for example, the angular part of one of the nine normalized spherical g atomic orbitals is:
One of the 7 components of a real multipole of order 3 (octupole) of a system of N charges q i is
Spherical harmonics in Cartesian form
The following expresses normalized spherical harmonics in Cartesian coordinates (Condon-Shortley phase):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^\ell\, \begin{pmatrix} Y_\ell^{m} \\ Y_\ell^{-m} \end{pmatrix} = \left[\frac{2\ell+1}{4\pi}\right]^{1/2} \bar{\Pi}^m_\ell \begin{pmatrix} (-1)^m (A_m + i B_m)/\sqrt{2} \\ \qquad (A_m - i B_m)/\sqrt{2} \\ \end{pmatrix} , \qquad m > 0. }
and for m = 0:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^\ell\,Y_\ell^{0} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \bar{\Pi}^0_\ell . }
Here
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y) = \sum_{p=0}^m {m \choose p} x^p y^{m-p} \cos (m-p) \frac{\pi}{2}, }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y) = \sum_{p=0}^m {m\choose p} x^p y^{m-p} \sin (m-p) \frac{\pi}{2}, }
and for m > 0:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\Pi}^m_\ell(z) = \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} (-1)^k 2^{-\ell} {\ell\choose k}{2\ell-2k \choose \ell} \frac{(\ell-2k)!}{(\ell-2k-m)!} \; r^{2k}\; z^{\ell-2k-m}. }
For m = 0:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\Pi}^0_\ell(z) = \sum_{k=0}^{\left \lfloor \ell/2\right \rfloor} (-1)^k 2^{-\ell} {\ell \choose k}{2\ell-2k \choose \ell} \; r^{2k}\; z^{\ell-2k}. }
Examples
Using the expressions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\Pi}^\ell_m(z)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y)\,} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y)\,} listed explicitly above we obtain:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y^{-2}_4 = \frac{1}{r^4} \left[{\textstyle \frac{9}{4\pi}\cdot\frac{5}{32}}\right]^{1/2}(7z^2-r^2) (x-iy)^2 = \left[{\textstyle \frac{9}{4\pi}\cdot\frac{5}{32}}\right]^{1/2}(7 \cos^2\theta -1) (\sin^2\theta e^{-2 i \varphi}) }
References
Most books on angular momenta discuss solid harmonics. See, for instance,
- D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition ,Clarendon, Oxford, (1993)
- L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading (1981)
The addition theorems for solid harmonics have been proved in different manners by many different workers. See for two different proofs for example:
- R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10, p. 1261 (1977)
- M. J. Caola, J. Phys. A: Math. Gen. Vol. 11, p. L23 (1978)