Exponential function: Difference between revisions
imported>Dmitrii Kouznetsov (→Generalization of exponential: misprint) |
imported>Dmitrii Kouznetsov m (→Generalization of exponential: misprint) |
||
Line 55: | Line 55: | ||
\mathrm{sexp}_b\Big(c+ | \mathrm{sexp}_b\Big(c+ | ||
{\mathrm{sexp}_b}^{-1}(z)\Big) </math> | {\mathrm{sexp}_b}^{-1}(z)\Big) </math> | ||
where <math> \mathrm{sexp}_b(z) </math> is function <math>F</math> | where <math> \mathrm{sexp}_b(z) </math> is function <math>F</math> satisfying conditions | ||
:<math>F(z+1)=\exp_b(F(z))</math> | :<math>F(z+1)=\exp_b(F(z))</math> |
Revision as of 00:21, 29 October 2008
Exponential function or exp, can be defined as solution of differential equaiton
with additional condition
Exponential function is believed to be invented by Leonarf Euler some centuries ago. Since that time, it is widely used in technology and science; in particular, the exponential growth is described with such function.
Properties
exp is entire function.
For any comples and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} , the basic property holds:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(a)~\exp(b)=\exp(a+b) }
The definition allows to calculate all the derrivatives at zero; so, the Tailor expansion has form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(z)=\sum_{n=0}^\infty \frac{z^n}{n!} ~ ~ \forall z\in \mathbb{C} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}} means the set of complex numbers. The series converges for and complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} . In particular, the series converge for any real value of the argument.
Inverse function
Inverse function of the exponential is logarithm; for any complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\ne 0} , the relation holds:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(\log(z))=z ~ \forall z\in \mathbb{C} }
Exponential also can be considered as inverse of logarithm, while the imaginary part of the argument is smaller than Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(\exp(z))=z ~ \forall z\in \mathbb{C} ~ \mathrm{~ such ~ that ~ } |\Im(z)|<\pi }
While lofarithm has cut at the negative part of the real axis, exp can be considered
Number e
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm {e} = \exp(1)} is widely used in applications; this notation is commonly accepted. Its approximate value is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm e}=\exp(1) \approx 2.71828 18284 59045 23536}
Relation with sin and cos functions
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(\mathrm{i} z) = \cos(z)+\mathrm{i} \sin(z) ~ \forall z\in \mathbb{C} }
Generalization of exponential
Notation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b} is used for the exponential with modified argument;
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b(z)=b^z=\exp(\log(b) z)}
Notation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^c} is used for the iterated exponential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^0(z) =z }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^1(z) =\exp_b(z) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^2(z) =\exp_b(\exp_b(z) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^{c+1}(z) =\exp_b(\exp_b^c(z) }
For non-integer values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , the iterated exponential can be defined as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_b^c(z) = \mathrm{sexp}_b\Big(c+ {\mathrm{sexp}_b}^{-1}(z)\Big) }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{sexp}_b(z) } is function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} satisfying conditions
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(z+1)=\exp_b(F(z))}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(0)=1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(z)~ \mathrm{ ~is~ holomorphic~ and~ bounded~ in~ the~ range}~ |\Re(z)|<1}
The inverse function is defined with condition
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\Big(F^{-1}(z)\Big)=z}
and, within some range of values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^{-1}\Big (F(z)\Big)=z}