Abel function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
(adding WPAttribution prior to making this internal)
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
'''Abel function''' is a special kind of solution of the Abel equations, used to classify them as [[superfunction]]s, and formulate conditions of uniqueness.
'''Abel function''' is a special kind of solution of the Abel equations, used to classify them as [[superfunction]]s, and formulate conditions of uniqueness.


The [[Abel equation]] is class of equations which can be written in the form
The ''Abel equation'' is a class of equations which can be written in the form
:<math>
:<math>
g(f(z))=g(z)+1
g(f(z))=g(z)+1
Line 46: Line 46:


==References==
==References==
<references/>
<references/>[[Category:Suggestion Bot Tag]]

Latest revision as of 13:54, 5 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Abel function is a special kind of solution of the Abel equations, used to classify them as superfunctions, and formulate conditions of uniqueness.

The Abel equation is a class of equations which can be written in the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(f(z))=g(z)+1 }

where function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is supposed to be given, and function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} is expected to be found. This equation is closely related to the iterational equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(F(z))=F(z+1)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(u)=v}

which is also called "Abel equation".

In general the Abel equation may have many solutions, and the additional requirements are necessary to select the only one among them.

superfunctions and Abel functions

Definition 1: Superfunction

If

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C \subseteq \mathbb{C}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D \subseteq \mathbb{C} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is holomorphic function on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is holomorphic function on

Then and only then
is superfunction of on

Definition 2: Abel function

If

is superfunction on on
,
is holomorphic on

Then and only then

id Abel function in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} .

Examples

Properties of Abel functions

Attribution

Some content on this page may previously have appeared on Wikipedia.

References