Claude Shannon/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Pat Palmer
No edit summary
 
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}


* [https://dspace.mit.edu/handle/1721.1/11173/ A symbolic analysis of relay and switching circuits] - Shannon's Master of Science thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1940. Last access 8/9/2020
* <big>"A symbolic analysis of relay and switching circuits" (1938)</big> - master's thesis in [[Electrical engineering|EE]] at [[Massachusetts Institute of Technology|MIT]]<ref name=SymbolicAnalysis />
**''This linked [[Boolean algebra]] to the design of digital circuits (and called it "Switching Algebra")''
* <big>"A Mathematical Theory of Cryptography" (1945)</big> - Bell Laboratories Memorandum MM 45-110-02. Classified at the time of its publication<ref name=TheoryCryptography />.
* <big>"A mathematical theory of communication" (1948)</big> - published in two parts in [[Bell System Technical Journal]]: July, vol. 27, pp. 379-423, and Oct., vol. 28, pp. 623-656.<ref name=TheoryCommunication />
** ''This paper coined the use of the word "bit" and had important implications about the maximum amount of information that could be shoved into a given amount of spectrum before being overwhelmed by [[noise]], a fundamental limit that became known as [[Shannon's Law]].  It would be 45 years before the scientific world was able to verify all the predictions in this paper.''
* <big>"Communication Theory of Secrecy Systems (1949)</big>, Bell System Technical Journal, vol. 28, pp. 656-715, 1949<ref name=TheorySecrecy />.
* <big>"Communication In The Presence Of Noise (1949)</big>, Proceedings of the Institute of Radio Engineers (IRE), vol. 37, pp. 10–21, Jan. 1949<ref name=PresenceNoise />. 
** ''This paper extends and elaborates on "A Mathematical Theory of Communication".  It was reprinted in Proceedings of the IEEE in 1984 and again in 1998.''
* <big>"Probability of error for optimal codes in a Gaussian channel" (1959)</big> originally in  Bell Systems Technical Journal, vol. 38, pp. 611–656, 1959<ref name=ProbGaussian />.
 
==References==
<references>
 
<ref name=SymbolicAnalysis>
[https://doi.org/10.1109/T-AIEE.1938.5057767 A symbolic analysis of relay and switching circuits], downloadable at [https://dspace.mit.edu/handle/1721.1/11173;jsessionid=1749D77E60D489A8D9B511EE79B1DDDE MIT]; DOI 10.1109/T-AIEE.1938.5057767
</ref>
 
<ref name=TheorySecrecy>
[https://doi.org/10.1002/j.1538-7305.1949.tb00928.x Communication theory of secrecy systems], downloadable at [https://typeset.io/papers/communication-theory-of-secrecy-systems-2y1h3cz20a typeset.io]; DOI j.1538-7305.1949.tb00928.x
</ref>
 
<ref name=TheoryCryptography>
Shannon, C.E. (1945) A Mathematical Theory of Cryptography. Bell System Technical Memo MM 45-110-02, September 1, downloadable at [https://evervault.com/papers/shannon.pdf Evervault].
</ref>
 
<ref name=TheoryCommunication>
[https://doi.org/10.1002/j.1538-7305.1948.tb01338.x A mathematical theory of communication], downloadable at [https://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1948.tb01338.x Wiley]; DOI 10.1002/j.1538-7305.1948.tb01338.x
</ref>
 
<ref name=PresenceNoise>
[https://dx.doi.org/10.1109/JRPROC.1949.232969 Communication In The Presence Of Noise], downloadable at [https://fab.cba.mit.edu/classes/S62.12/docs/Shannon_noise.pdf MIT]; DOI 10.1109/JRPROC.1949.232969
</ref>
 
<ref name=ProbGaussian>
[https://doi.org/10.1002/j.1538-7305.1959.tb03905.x Probability of error for optimal codes in a Gaussian channel], downloadable at [https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1959.tb03905.x Wiley]; DOI j.1538-7305.1959.tb03905.x
</ref>
 
</references>

Latest revision as of 12:27, 4 January 2023

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
A list of key readings about Claude Shannon.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
  • "A symbolic analysis of relay and switching circuits" (1938) - master's thesis in EE at MIT[1]
    • This linked Boolean algebra to the design of digital circuits (and called it "Switching Algebra")
  • "A Mathematical Theory of Cryptography" (1945) - Bell Laboratories Memorandum MM 45-110-02. Classified at the time of its publication[2].
  • "A mathematical theory of communication" (1948) - published in two parts in Bell System Technical Journal: July, vol. 27, pp. 379-423, and Oct., vol. 28, pp. 623-656.[3]
    • This paper coined the use of the word "bit" and had important implications about the maximum amount of information that could be shoved into a given amount of spectrum before being overwhelmed by noise, a fundamental limit that became known as Shannon's Law. It would be 45 years before the scientific world was able to verify all the predictions in this paper.
  • "Communication Theory of Secrecy Systems (1949), Bell System Technical Journal, vol. 28, pp. 656-715, 1949[4].
  • "Communication In The Presence Of Noise (1949), Proceedings of the Institute of Radio Engineers (IRE), vol. 37, pp. 10–21, Jan. 1949[5].
    • This paper extends and elaborates on "A Mathematical Theory of Communication". It was reprinted in Proceedings of the IEEE in 1984 and again in 1998.
  • "Probability of error for optimal codes in a Gaussian channel" (1959) originally in Bell Systems Technical Journal, vol. 38, pp. 611–656, 1959[6].

References

  1. A symbolic analysis of relay and switching circuits, downloadable at MIT; DOI 10.1109/T-AIEE.1938.5057767
  2. Shannon, C.E. (1945) A Mathematical Theory of Cryptography. Bell System Technical Memo MM 45-110-02, September 1, downloadable at Evervault.
  3. A mathematical theory of communication, downloadable at Wiley; DOI 10.1002/j.1538-7305.1948.tb01338.x
  4. Communication theory of secrecy systems, downloadable at typeset.io; DOI j.1538-7305.1949.tb00928.x
  5. Communication In The Presence Of Noise, downloadable at MIT; DOI 10.1109/JRPROC.1949.232969
  6. Probability of error for optimal codes in a Gaussian channel, downloadable at Wiley; DOI j.1538-7305.1959.tb03905.x