Molar gas constant: Difference between revisions
imported>Milton Beychok m (Fixed an oversight) |
imported>Henry A. Padleckas (mentioned universal gas constant and equations of state in intro) |
||
Line 36: | Line 36: | ||
|} | |} | ||
In [[chemistry]], [[chemical engineering]] and [[physics]], the '''molar gas constant''' ''R'' is a fundamental physical constant which appears in a large number of fundamental equations in the physical sciences, such as the [[ideal gas law]] and the [[Nernst equation]]. It is equivalent to the the [[Boltzmann constant]] (''k<sub>B</sub>'') times [[Avogadro's constant]] (''N''): ''R'' = ''k''<sub>B</sub>''N''<sub>A</sub>. | In [[chemistry]], [[chemical engineering]] and [[physics]], the '''molar gas constant''' (also called '''universal gas constant''') '''R''' is a fundamental physical constant which appears in a large number of fundamental equations in the physical sciences, such as the [[ideal gas law]] and other [[Equation of state|equations of state]] and the [[Nernst equation]]. It is equivalent to the the [[Boltzmann constant]] (''k<sub>B</sub>'') times [[Avogadro's constant]] (''N''): ''R'' = ''k''<sub>B</sub>''N''<sub>A</sub>. | ||
Currently its most accurate value is:<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?r Molar gas constant] Obtained on 16 December, 2007 from the [[NIST]] website</ref> | Currently its most accurate value is:<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?r Molar gas constant] Obtained on 16 December, 2007 from the [[NIST]] website</ref> |
Revision as of 00:39, 2 December 2009
Values of R | Units |
---|---|
8.314472 | J·K-1·mol-1 |
0.082057 | L·atm·K-1·mol-1 |
8.205745 × 10-5 | m3·atm·K-1·mol-1 |
8.314472 | L·kPa·K-1·mol-1 |
8.314472 | m3·Pa·K-1·mol-1 |
62.36367 | L·mmHg·K-1·mol-1 |
62.36367 | L·Torr·K-1·mol-1 |
83.14472 | L·mbar·K-1·mol-1 |
10.7316 | ft3·psi· °R-1·lb-mol-1 |
0.73024 | ft3·atm·°R-1·lb-mol-1 |
In chemistry, chemical engineering and physics, the molar gas constant (also called universal gas constant) R is a fundamental physical constant which appears in a large number of fundamental equations in the physical sciences, such as the ideal gas law and other equations of state and the Nernst equation. It is equivalent to the the Boltzmann constant (kB) times Avogadro's constant (N): R = kBNA.
Currently its most accurate value is:[1]
- R = 8.314472 J · K-1 · mol-1
The gas constant occurs in the ideal gas law as follows:
where:
- P is the gas absolute pressure
- T is the gas absolute temperature
- V is the volume the gas occupies
- n is the number of moles of gas
- Vm is the molar volume
Notation for the gas constant
The gas constant defined in this article is the universal gas constant, , that applies to any gas. There is also a specific gas constant, which can be denoted as . The specific gas constant is defined as where is the molecular weight.
Unfortunately, many authors in the technical literature sometimes use as the specific gas constant without denoting it as such or stating that it is the specific gas constant. This can and does lead to confusion for many readers.
Reference
- ↑ Molar gas constant Obtained on 16 December, 2007 from the NIST website