Topological space: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
m (→‎Some topological notions: Typo Open cover opens-->open)
imported>Hendra I. Nurdin
(→‎Some topological notions: Added topological notions)
Line 36: Line 36:
; Open cover : A collection <math>\mathcal{U}</math> of open sets of ''X'' is said to be an open cover for ''X'' if each point <math>x \in X</math> belongs to at least one of the open sets in <math>\mathcal{U}</math>  
; Open cover : A collection <math>\mathcal{U}</math> of open sets of ''X'' is said to be an open cover for ''X'' if each point <math>x \in X</math> belongs to at least one of the open sets in <math>\mathcal{U}</math>  
; Path: A path <math>\gamma</math> is a [[continuous function]] <math>\gamma:[0,1]\rightarrow X</math>. The point <math>\gamma(0)</math> is said to be the '''starting point''' of <math>\gamma</math> and <math>\gamma(1)</math> is said to be the '''end point'''. A path joins its starting point to its end point
; Path: A path <math>\gamma</math> is a [[continuous function]] <math>\gamma:[0,1]\rightarrow X</math>. The point <math>\gamma(0)</math> is said to be the '''starting point''' of <math>\gamma</math> and <math>\gamma(1)</math> is said to be the '''end point'''. A path joins its starting point to its end point
; Hausdorff/separability property: ''X'' has the Hausdorff (or separability) property if for any pair <math>x,y \in X</math> there exist ''disjoint'' sets ''U'' and ''V'' with <math>x \in U</math> and <math>y \in V</math>
; Connectedness: ''X'' is connected if given any two ''disjoint'' open sets ''U'' and ''V'' such that <math>X=U \cup V </math>, then either ''X=U'' or ''X=V''
; Path-connectedness : ''X'' is path-connected if for any pair <math>x,y \in X</math> there exists a path joining ''x'' to ''y''
A topological space with the Hausdorff, connectedness, path-connectedness property is called, respectively, a Hausdorff (or separable), connected, path-connected topological space. A path connected topological space is also connected, but the converse need not be true.


== See also ==
== See also ==

Revision as of 17:13, 16 September 2007

In mathematics, a topological space is an ordered pair where is a set and is a certain collection of subsets of called the open sets or the topology of . The topology of introduces a structure on the set which is useful for defining some important abstract notions such as the "closeness" of two elements of and convergence of sequences of elements of .

Formal definition

A topological space is an ordered pair where is a set and is a collection of subsets of (i.e. ) with the following three properties:

1. and (the empty set) are in

2. The union of any number (countable or uncountable) of elements of is again in

3. The intersection of any finite number of elements of is again in

Elements of the set are called open sets (of ).

Note that as shorthand a topological space is often simply written as once the particular topology on is understood.

Examples

1. Let where denotes the set of real numbers. The open interval ]a, b[ (where a < b) is the set of all numbers between a and b:

Then a topology can be defined on to consist of and all sets of the form:

where is any arbitrary index set, and and are real numbers satisfying for all . This topology is precisely the familiar topology induced on by the Euclidean distance and probably the most widely used in the applied sciences. However, in general one may define different inequivalent topologies on a particular set and in the next example another topology on , albeit a relatively obscure one, will be constructed.

2. Let as before. Let be a collection of subsets of defined by the requirement that if and only if or contains all except at most a finite number of real numbers. Then it is straightforward to verify that defined in this way has the three properties required to be a topology on . This topology is known as the Zariski topology.

Some topological notions

This section introduces some important topological notions. Throughout, X will denote a topological space with the topology O.

Partial list of topological notions
Neighbourhood
A subset N of X is a neighbourhood of a point if N contains an open set containing the point x
Limit point
A point is a limit point of a subset A of X if any open set in O containing x also contains a point with . An equivalent definition is that is a limit point of A if every neighbourhood of x contains a point different from x.
Open cover
A collection of open sets of X is said to be an open cover for X if each point belongs to at least one of the open sets in
Path
A path is a continuous function . The point is said to be the starting point of and is said to be the end point. A path joins its starting point to its end point
Hausdorff/separability property
X has the Hausdorff (or separability) property if for any pair there exist disjoint sets U and V with and
Connectedness
X is connected if given any two disjoint open sets U and V such that , then either X=U or X=V
Path-connectedness
X is path-connected if for any pair there exists a path joining x to y

A topological space with the Hausdorff, connectedness, path-connectedness property is called, respectively, a Hausdorff (or separable), connected, path-connected topological space. A path connected topological space is also connected, but the converse need not be true.

See also

Topology

Analysis

Metric space

References

1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980

2. D. Wilkins, Lecture notes for Course 212 - Topology, Trinity College Dublin, URL: [1]