Talk:Universe

From Citizendium
Revision as of 14:43, 25 October 2007 by imported>Bryan Eskew (New page: I started by coping the wikipedia article to my talk page, and started editing. I rearranged the article, and am editing each subpoint. My three goals for changing the wikipedia articl...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

I started by coping the wikipedia article to my talk page, and started editing. I rearranged the article, and am editing each subpoint.

My three goals for changing the wikipedia article:

  • Improve the flow of the article.
  • Reduce tech talk.
  • Find good references.

Bryan Eskew 14:43, 25 October 2007 (CDT)

Composition

The currently observable universe appears to have a geometrically flat space-time containing the equivalent mass-energy density of 9.9 × 10-30 grams per cubic centimeter. This mass-energy appears to consist of 73% dark energy, 23% cold dark matter and 4% atoms. Thus the density of atoms is on the order of a single hydrogen nucleus (or atom) for every four cubic meters of volume.[13] The exact nature of dark energy and cold dark matter remain a mystery.

During the early phases of the big bang, equal amounts of matter and antimatter were formed. However, through a CP-violation, physical processes resulted in an asymmetry in the amount of matter as compared to anti-matter. This asymmetry explains the amount of residual matter found in the universe today, as nearly all the matter and anti-matter would otherwise have annihilated each other when they came into contact.[14]

Prior to the formation of the first stars, the chemical composition of the Universe consisted primarily of hydrogen (75% of total mass), with a lesser amount of helium-4 (4He) (24% of total mass) and trace amounts of the isotopes deuterium (2H), helium-3 (3He) and lithium (7Li).[15][16] Subsequently the interstellar medium within galaxies has been steadily enriched by heavier elements. These are introduced as a result of supernova explosions, stellar winds and the expulsion of the outer envelope of evolved stars.[17]

The big bang left behind a background flux of photons and neutrinos. The temperature of the background radiation has steadily decreased as the universe expands, and now primarily consists of microwave energy equivalent to a temperature of 2.725 K.[18] The neutrino background is not observable with present-day technology, but is theorized to have a density of about 150 neutrinos per cubic centimetre.

Size

The deepest visible-light image of the cosmos, the Hubble Ultra Deep Field.Main article: Observable universe Very little is known about the size of the universe. It may be trillions of light years across, or even infinite in size. A 2003 paper[20] claims to establish a lower bound of 24 gigaparsecs (78 billion light years) on the size of the universe, but there is no reason to believe that this bound is anywhere near tight. See shape of the Universe for more information.

The observable (or visible) universe, consisting of all locations that could have affected us since the Big Bang given the finite speed of light, is certainly finite. The comoving distance to the edge of the visible universe is about 46.5 billion light years in all directions from the earth; thus the visible universe may be thought of as a perfect sphere with the Earth at its center and a diameter of about 93 billion light years.[21] Note that many sources have reported a wide variety of incorrect figures for the size of the visible universe, ranging from 13.7 to 180 billion light years. See Observable universe for a list of incorrect figures published in the popular press with explanations of each.


Shape

Main articles: Shape of the universe and Large-scale structure of the cosmos An important open question of cosmology is the shape of the universe. Mathematically, which 3-manifold best represents the spatial part of the universe?

Firstly, whether the universe is spatially flat, i.e. whether the rules of Euclidean geometry are valid on the largest scales, is unknown. Currently, most cosmologists believe that the observable universe is very nearly spatially flat, with local wrinkles where massive objects distort spacetime, just as the surface of a lake is nearly flat. This opinion was strengthened by the latest data from WMAP, looking at "acoustic oscillations" in the cosmic microwave background radiation temperature variations.[22]

Secondly, whether the universe is multiply connected is unknown. The universe has no spatial boundary according to the standard Big Bang model, but nevertheless may be spatially finite (compact). This can be understood using a two-dimensional analogy: the surface of a sphere has no edge, but nonetheless has a finite area. It is a two-dimensional surface with constant curvature in a third dimension. The 3-sphere is a three-dimensional equivalent in which all three dimensions are constantly curved in a fourth.

If the universe were compact and without boundary, it would be possible after traveling a sufficient distance to arrive back where one began. Hence, the light from stars and galaxies could pass through the observable universe more than once. If the universe were multiply-connected and sufficiently small (and of an appropriate, perhaps complex, shape) then conceivably one might be able to see once or several times around it in some (or all) directions. Although this possibility has not been ruled out, the results of the latest cosmic microwave background research make this appear very unlikely.


Homogeneity and isotropy

Fluctuations in the microwave background radiation. NASA/WMAP image.While there is considerable fractalized structure at the local level (arranged in a hierarchy of clustering), on the highest orders of distance the universe is very homogeneous. On these scales the density of the universe is very uniform, and there is no preferred direction or significant asymmetry to the universe. This homogeneity is a requirement of the Friedmann-Lemaître-Robertson-Walker metric employed in modern cosmological models.

The question of anisotropy in the early universe was significantly answered by the Wilkinson Microwave Anisotropy Probe, which looked for fluctuations in the microwave background intensity. The measurements of this anisotropy have provided useful information and constraints about the evolution of the universe.

To the limit of the observing power of astronomical instruments, objects radiate and absorb energy according to the same physical laws as they do within our own galaxy.[25] Based on this, it is believed that the same physical laws and constants are universally applicable throughout the observable universe. No confirmed evidence has yet been found to show that physical constants have varied since the big bang, and the possible variation is becoming well constrained.