Superfunction: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
m (→‎Definition: connected domain)
imported>Dmitrii Kouznetsov
Line 82: Line 82:


==Uniqueness==
==Uniqueness==
Holomorphism declared in the definition is essential for the uniqueness. If no additional requirements on the continuity of the function in the complex plane, the strip
In general, the super-function is not unique.
<math> \{ z \in \mathbb{C} : -1<\Re(z)\le 0 \}</math> can be filled with any function
For a given base function <math>H</math>, from given <math>(a\mapsto d)</math> superfunciton <math>F</math>, another <math>(a\mapsto d)</math>  super-function <math>G</math> could be constructed as
(for example, the [[Dirichlet function]]), and extended with the recurrent equation.
: <math>G(z)=F(z+\mu(z))</math>
A little bit more regular approach is fitting of the superfunction at the part of the real axis with some simple function (for example, the linear function), and following extension of this step-vice function to the whole complex plane
where <math>\mu</math> is any 1-periodic function, holomorphic at least in some vicinity of the real axis, such that <math> \mu(a)=0 </math>.
<ref name="uxp">M.H.Hooshmand. ”Ultra power and ultra exponential functions”.
[[Integral Transforms and Special Functions]] 17 (8), 549-558 (2006)</tef>; in this case,
for any <math>z\in <\math>\mathnbb{C}</math> at least one of points <math>z<math> and <math>z+1</math> is out of the range of holomorphizm.


There is claim, that, for any base <math>b>1</math>, and <math>C=\{ z\in \mathbb{C}: \Re(z)>-2 \} </math>,
The modified super-function may have narrowed range of holomorphism.
the [[tetration]], id est, the <math>(C, 0\mapsto 1)</math> superfunctin of <math>H=\exp_z</math>, is unique <ref name="kouznetsov">
The variety of possible super-functions is especially large in the limiting case, when the width of the range of holomorphizm becomes zero; in this case, one deals with the real-analytic superfunctions <ref name="walker">
P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. [[Mathematics of computation]], 196 (1991), 723-733.
</ref>.
 
If the range of holomorphism required is large enough, then, the super-function is expected to be unique,
at least in some specific base functions <math>H</math>. In particular, the <math>(C, 0\mapsto 1)</math> super-function of
<math>\exp_b</math>, for <math>b>1</math>, is called [[tetration]] and is believed to be unique at least for
<math>C= \{ z \in \mathbb{C} ~:~\Re(z)>-2 \}</math>; for the case <math> b>\exp(1/e)</math>, see <ref name="kouznetsov">
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. [[Mathermatics of Computation]], 2009,
D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. [[Mathermatics of Computation]], 2009,
http://www.ams.org/mcom/0000-000-00/S0025-5718-09-02188-7/home.html </ref>;
http://www.ams.org/mcom/0000-000-00/S0025-5718-09-02188-7/home.html </ref>;
but up to year 2009, it is rather [[conjecture]] than a theorem with the formal mathematical proof.
but up to year 2009, the uniqueness is rather [[conjecture]] than a theorem with the formal mathematical proof.
 
The multiple superfunctions become possible at the reduction of the range <math>C</math> of holomorphizm.
Then, for the same base function <math>H</math>, from given <math>(a\mapsto d)</math> superfunciton <math>F</math>, another <math>(a\mapsto d)</math>  super-function <math>G</math> can be constructed as
<math>G(z)=F(z+\mu(z))</math>, where <math>\mu</math> is any 1-periodic function, holomorphic at least in some vicinity of the real axis, such that <math> \mu(a)=0 </math>. In particular, in the limiting case, when the width of the range of holomorphism becomes zero, the huge variety of the [[real-analytic]] superfunctions can be constructed.


==Examples==
==Examples==

Revision as of 05:38, 24 April 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Superfunction comes from iteration of another function. Roughly, for some function and for some constant , the superfunction could be defined with expression

then can be interpreted as superfunction of function . Such definition is valid only for positive integer . The most research and appllications around the superfunctions is related with various extensions of superfunction; and analysis of the existence, uniqueness and ways of the evaluation. For simple function , such as addition of a constant or multiplication by a constant, the superfunction can be expressed in terms of elementary function. In particular, the Ackernann functions and tetration can be interpreted in terms of super-functions.

History

LOGOs of the Phys.Dept. of the MSU and that of Math.Dep.

Analysis of superfunctions came from the application to the evaluation of fractional iterations of functions. Superfunctions and their inverse functions allow evaluation of not only minus-first power of a function (inverse function), but also any real and even complex iteration of the function. Historically, the first function of such kind considered was ; then, function was used as logo of the Physics department of the Moscow State University [1][2][3]. That time, researchers did not have computational facilities for evaluation of such functions, but the was more lucky than the ; at least the existence of holomorphic function such that has been demonstrated in 1950 by Helmuth Kneser [4]. Actually, for his proof, Kneser had constructed the superfunction of exp and corresponding Abel function , satisfying the Abel equation

the inverse function is the entire super-exponential, although it is not real at the real axis; it cannot be interpreted as tetration, because the condition cannot be realized for the entire super-exponential.

Extensions

The recurrence above can be written as equations

.

Instead of the last equation, one could write

and extend the range of definition of superfunction to the non-negative integers. Then, one may postulate

and extend the range of validity to the integer values larger than . The following extension, for example,

is not trifial, because the inverse function may happen to be not defined for some values of . In particular, tetration can be interpreted as super-function of exponential for some real base ; in this case,

then, at ,

.

but

.

For extension to non-integer values of the argument, superfunction should be defined in different way.

Definition

For complex numbers and , such that belongs to some connected domain ,
superfunction (from to ) of holomorphic function on domain is function , holomorphic on domain , such that

.

Uniqueness

In general, the super-function is not unique. For a given base function , from given superfunciton , another super-function could be constructed as

where is any 1-periodic function, holomorphic at least in some vicinity of the real axis, such that .

The modified super-function may have narrowed range of holomorphism. The variety of possible super-functions is especially large in the limiting case, when the width of the range of holomorphizm becomes zero; in this case, one deals with the real-analytic superfunctions [5].

If the range of holomorphism required is large enough, then, the super-function is expected to be unique, at least in some specific base functions . In particular, the super-function of , for , is called tetration and is believed to be unique at least for ; for the case , see [6]; but up to year 2009, the uniqueness is rather conjecture than a theorem with the formal mathematical proof.

Examples

Addition

Chose a complex number and define function with relation . Define function with relation .

Then, function is superfunction ( to ) of function on .

Multiplication

Exponentiation is superfunction (from 1 to ) of function .

Quadratic polynomials

Let . Then, is a superfunction of .

Indeed,

and

In this case, the superfunction is periodic; its period

and the superfunction approaches unity also in the negative direction of the real axis,

The example above and the two examples below are suggested at [7]

Rational function

In general, the transfer function has no need to be entire function. Here is the example with meromorghic function . Let

;

Then, function

is superfunction of function , where is the set of complex numbers except singularities of function . For the proof, the trigonometric formula

can be used at , that gives

Algebraic function

Exponentiation

Let , , . Then, tetration is a superfunction of .

Abel function

Inverse of superfunction can be interpreted as the Abel function.

For some domain and some ,,
Abel function (from to ) of function with respect to superfunction on domain is holomorphic function from to such that

The definitionm above does not reuqire that ; although, from properties of holomorphic functions, there should exist some subset such that . In this subset, the Abel function satisfies the Abel equation.

Abel equation

The Abel equation is some equivalent of the recurrent equation

in the definition of the superfunction. However, it may hold for from the reduced domain .


Applications of superfunctions and Abel functions

References

  1. Logo of the Physics Department of the Moscow State University. (In Russian); http://zhurnal.lib.ru/img/g/garik/dubinushka/index.shtml
  2. V.P.Kandidov. About the time and myself. (In Russian) http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf:

    По итогам студенческого голосования победителями оказались значок с изображением

    рычага, поднимающего Землю, и нынешний с хорошо известной эмблемой в виде корня из факториала, вписанными в букву Ф. Этот значок, созданный студентом кафедры биофизики А.Сарвазяном, привлекал своей простотой и выразительностью. Тогда эмблема этого значка подверглась жесткой критике со стороны руководства факультета, поскольку она не имеет физического смысла, математически абсурдна и идеологически бессодержательна.

  3. 250 anniversary of the Moscow State University. (In Russian) ПЕРВОМУ УНИВЕРСИТЕТУ СТРАНЫ - 250! http://nauka.relis.ru/11/0412/11412002.htm

    На значке физфака в букву "Ф" вписано стилизованное изображение корня из факториала (√!) - выражение, математического смысла не имеющее.

  4. H.Kneser. “Reelle analytische L¨osungen der Gleichung und verwandter Funktionalgleichungen”. Journal fur die reine und angewandte Mathematik, 187 (1950), 56-67.
  5. P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
  6. D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathermatics of Computation, 2009, http://www.ams.org/mcom/0000-000-00/S0025-5718-09-02188-7/home.html
  7. Mueller. Problems in Mathematics. http://www.math.tu-berlin.de/~mueller/projects.html