Neutrino: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
(edits for clarity)
imported>Anthony.Sebastian
(edits for style)
Line 1: Line 1:
{{subpages}}
{{subpages}}
In 1930 the physicist, [[Wolfgang Pauli]] (1900-1958),<ref name=paulinobelbio>[http://nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-bio.html Biography of Wolfgang Pauli on the Nobel Prize website].</ref> postulated a new fundamental particle of the universe, subsequently (1935) named by the physicist, [[Enrico Fermi]] (1901-1954),<ref name=ferminobelbio>[http://nobelprize.org/nobel_prizes/physics/laureates/1938/fermi.html Biography of Enrico Fermi on the Nobel Prize website].</ref> the '''neutrino''' ("little neutral one" in Fermi's Italian), an electrically uncharged particle associated with the negatively electrically charged particle, the [[electron]], but presumed to have no [[mass]].
In 1930, the physicist, [[Wolfgang Pauli]] (1900-1958),<ref name=paulinobelbio>[http://nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-bio.html Biography of Wolfgang Pauli on the Nobel Prize website].</ref> postulated a new fundamental particle of the universe, subsequently (1935) named by the physicist, [[Enrico Fermi]] (1901-1954),<ref name=ferminobelbio>[http://nobelprize.org/nobel_prizes/physics/laureates/1938/fermi.html Biography of Enrico Fermi on the Nobel Prize website].</ref> the '''neutrino''' ("little neutral one" in Fermi's Italian), an electrically uncharged particle associated with the negatively electrically charged particle, the [[electron]], but presumed to have no [[mass]].


By the time of Pauli's postulated the existence of the neutrino, physicists had already discovered that atoms, previously thought of as homogeneous and indivisible, consisted of sub-particles, called subatomic particles, specifically, protons and neutrons localized in a center-of-the-atom nucleus, the major owners of atoms' mass, and, by comparison tiny, electrons surrounding the nucleus. The protons each carried a unit of positive electrical charge and the electrons, equal in number to the number of protons, each carried a unit of negative electrical charge, rendering the atom as a whole electrically neutral, inasmuch as the neutron itself carried no electrical charge.
By the time of Pauli's postulated the existence of the neutrino, physicists had already discovered that atoms, previously thought of as homogeneous and indivisible, consisted of sub-particles, called subatomic particles, specifically, protons and neutrons localized in a center-of-the-atom nucleus, the major owners of atoms' mass, and, by comparison tiny, electrons surrounding the nucleus. The protons each carried a unit of positive electrical charge and the electrons, equal in number to the number of protons, each carried a unit of negative electrical charge, rendering the atom as a whole electrically neutral, inasmuch as the neutron itself carried no electrical charge.
Line 6: Line 6:
They had also discovered that the some atoms were unstable, in that they might emit one or more their subatomic particles, a process called [[radioactivity]]...
They had also discovered that the some atoms were unstable, in that they might emit one or more their subatomic particles, a process called [[radioactivity]]...


Basing his thinking based on the widely accepted [[Thermodynamics|law of conservation of energy]], Pauli postulated the existence of an electron-associated presumedly massless neutrino to reconcile the observed discrepancy between the energy carried by an electron emitted from the nucleus during the radioactive process called '[[beta decay]]' &mdash; electron energy too small &mdash; and the energy change of the nucleus, the missing energy carried off by the postulated chargeless neutrino particle.<ref name=son>[http://www-numi.fnal.gov/public/story.html The Story of the Neutrino]. NuMI-MINOS Homepage. Fermi National Accelerator Laboratory.</ref>
Basing his thinking on the widely accepted [[Thermodynamics|law of conservation of energy]], Pauli postulated the existence of an electron-associated presumedly massless neutrino in order to reconcile the observed discrepancy between the energy carried by an electron emitted from the nucleus during the radioactive process called '[[beta decay]]' &mdash; electron energy too small &mdash; and the energy change of the nucleus itself, the missing energy carried off by the postulated chargeless neutrino particle.<ref name=son>[http://www-numi.fnal.gov/public/story.html The Story of the Neutrino]. NuMI-MINOS Homepage. Fermi National Accelerator Laboratory.</ref>


==References==
==References==
<references />
<references />

Revision as of 19:14, 5 August 2010

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In 1930, the physicist, Wolfgang Pauli (1900-1958),[1] postulated a new fundamental particle of the universe, subsequently (1935) named by the physicist, Enrico Fermi (1901-1954),[2] the neutrino ("little neutral one" in Fermi's Italian), an electrically uncharged particle associated with the negatively electrically charged particle, the electron, but presumed to have no mass.

By the time of Pauli's postulated the existence of the neutrino, physicists had already discovered that atoms, previously thought of as homogeneous and indivisible, consisted of sub-particles, called subatomic particles, specifically, protons and neutrons localized in a center-of-the-atom nucleus, the major owners of atoms' mass, and, by comparison tiny, electrons surrounding the nucleus. The protons each carried a unit of positive electrical charge and the electrons, equal in number to the number of protons, each carried a unit of negative electrical charge, rendering the atom as a whole electrically neutral, inasmuch as the neutron itself carried no electrical charge.

They had also discovered that the some atoms were unstable, in that they might emit one or more their subatomic particles, a process called radioactivity...

Basing his thinking on the widely accepted law of conservation of energy, Pauli postulated the existence of an electron-associated presumedly massless neutrino in order to reconcile the observed discrepancy between the energy carried by an electron emitted from the nucleus during the radioactive process called 'beta decay' — electron energy too small — and the energy change of the nucleus itself, the missing energy carried off by the postulated chargeless neutrino particle.[3]

References