Lucas sequence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
mNo edit summary
imported>Meg Taylor
(copyedit)
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:


There exist two kinds of Lucas sequences:
There exist two kinds of Lucas sequences:
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>,
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>,


where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  
Line 19: Line 19:


*The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>.
*The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>.
*For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>.
*For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>.
*For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is holds that  <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>.
*For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> is holds that  <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>.


For every Lucas sequence the following are true:
For every Lucas sequence the following are true:
Line 26: Line 26:
*<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\scriptstyle \operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math>
*<math>\scriptstyle \operatorname{gcd}(U_m,U_n)=U_{\operatorname{gcd}(m,n)}</math>
*<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>\scriptstyle U_m\ne 1</math>
*<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>\scriptstyle U_m\ne 1</math>
<!-- Taken from engish Wikipedia - Start -->
==Recurrence relation==
The Lucas sequences ''U''(''P'',''Q'') and ''V''(''P'',''Q'') are defined by the [[recurrence relation]]s
:<math>U_0(P,Q)=0 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
:<math>U_1(P,Q)=1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
:<math>U_n(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q) \mbox{  for }n>1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
and
:<math>V_0(P,Q)=2 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
:<math>V_1(P,Q)=P \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
:<math>V_n(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q) \mbox{  for }n>1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
<!-- Taken from english Wikipedia - End -->


==Fibonacci numbers and Lucas numbers==
==Fibonacci numbers and Lucas numbers==
Line 46: Line 74:
*P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
*P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
*P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0.
*P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0.
[[Category:Mathematics Workgroup]]
[[Category:CZ Live]]

Latest revision as of 20:44, 20 February 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a Lucas sequence is a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. Lucas sequences have one common characteristic: they can be generated over quadratic equations of the form: with .

There exist two kinds of Lucas sequences:

  • Sequences with ,
  • Sequences with ,

where and are the solutions

and

of the quadratic equation .

Properties

  • The variables and , and the parameter and are interdependent. In particular, and .
  • For every sequence it holds that and .
  • For every sequence is holds that and .

For every Lucas sequence the following are true:

  • for all


Recurrence relation

The Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations

and


Fibonacci numbers and Lucas numbers

The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .

Lucas sequences and the prime numbers

If the natural number is a prime number then it holds that

  • divides
  • divides

Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .

The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.

Further reading