Lucas sequence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
mNo edit summary
imported>Meg Taylor
(copyedit)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Lucas sequences''' are the particular generalisation of sequences like [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. Every of this sequences has one common factor. They could be generatet over [[Quadratic equation|quadratic Equations]] of the form: <math>x^2-Px+Q=0\ </math>.
{{subpages}}
In [[mathematics]], a '''Lucas sequence''' is a particular generalisation of sequences like the [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. Lucas sequences have one common characteristic: they can be generated over [[quadratic equation|quadratic equations]] of the form: <math>\scriptstyle x^2-Px+Q=0\ </math> with <math>\scriptstyle P^2-4Q \ne 0</math>.


There exists kinds of Lucas sequences:
There exist two kinds of Lucas sequences:
*Sequence <math>U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequence <math>V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>U_n(P,Q)=a^n+b^n\ </math>
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>,
<math>a\ </math> and <math>b\ </math> are the solutions <math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> and <math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> of the quadratic equation <math>x^2-Px+Q=0\ </math>.
 
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  
 
:<math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math>  
 
and  
 
:<math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math>  
 
of the quadratic equation <math>\scriptstyle x^2-Px+Q=0</math>.


==Properties==
==Properties==


*The variables <math>a\ </math> and <math>b\ </math>, and the parameter <math>P\ </math> and <math>Q\ </math> are interdependent. So it is true, that <math>P=a+b\ </math> and <math>Q=a\cdot b.</math>.
*The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>.
*For every sequence <math>U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> is it true, that <math>U_0 = 0\ </math> and <math>U_1 = 1\ </math>.
*For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>.
*For every sequence <math>V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is it true, that  <math>V_0 = 2\ </math> and <math>V_1 = P\ </math>.
*For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> is holds that  <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>.


For every Lucas sequence is true that
For every Lucas sequence the following are true:
*<math>U_{2n} = U_n\cdot V_n\ </math>
*<math>\scriptstyle U_{2n} = U_n\cdot V_n\ </math>
*<math>V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math>
*<math>V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math>
*<math>\operatorname{ggT}(U_m,U_n)=U_{\operatorname{ggT}(m,n)}</math>
*<math>\scriptstyle \operatorname{gcd}(U_m,U_n)=U_{\operatorname{gcd}(m,n)}</math>
*<math>m\mid n\implies U_m\mid U_n</math>; für alle  <math>U_m\ne 1</math>
*<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>\scriptstyle U_m\ne 1</math>
 
<!-- Taken from engish Wikipedia - Start -->
 
==Recurrence relation==
 
The Lucas sequences ''U''(''P'',''Q'') and ''V''(''P'',''Q'') are defined by the [[recurrence relation]]s
 
:<math>U_0(P,Q)=0 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
:<math>U_1(P,Q)=1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
:<math>U_n(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q) \mbox{  for }n>1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
and
 
:<math>V_0(P,Q)=2 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
:<math>V_1(P,Q)=P \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
:<math>V_n(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q) \mbox{  for }n>1 \,</math>
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
 
<!-- Taken from english Wikipedia - End -->


==Fibonacci numbers and Lucas numbers==
==Fibonacci numbers and Lucas numbers==


The both best-known Lucas sequences are the Fibonacci numbers <math>U(1,-1)\ </math> and the Lucas numbers <math>V(1,-1)\ </math> with <math> a = \frac{1+\sqrt{5}}{2}</math> and <math>b = \frac{1-\sqrt{5}}{2}</math>.
The two best known Lucas sequences are the Fibonacci numbers <math>\scriptstyle U(1,-1)\ </math> and the Lucas numbers <math>\scriptstyle V(1,-1)\ </math> with <math>\scriptstyle  a = \frac{1+\sqrt{5}}{2}</math> and <math>\scriptstyle b = \frac{1-\sqrt{5}}{2}</math>.


==Lucas sequences and the Prime numbers==
==Lucas sequences and the prime numbers==


Is the natural number <math>p\ </math> a [[Prime number]], then it is true, that
If the natural number <math>\scriptstyle p\ </math> is a [[prime number]] then it holds that
*<math>p\ </math> divides <math>U_p(P,Q)-\left(\frac Dp\right)</math>
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle U_p(P,Q)-\left(\frac Dp\right)</math>
*<math>p\ </math> divides <math>V_p(P,Q)-P\ </math>
*<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math>


Fermat's little theorem you can see as a special case of <math>p\ </math> divides <math>(V_n(P,Q) - P)\ </math> because <math>a^p \equiv a \mod p</math> is äquivalent to <math>V_p(a+1,a) \equiv V_1(a+1,a) \mod p</math>
[[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \pmod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \pmod p</math>.


The converse (If <math>n\ </math> divides <math>U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>n\ </math> a prime number and if <math>m\ </math> divides <math>V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) is false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] respectively to [[Lucas pseudoprime|Lucas pseudoprimes]].
The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively.


== Further reading ==
== Further reading ==
*''The new Book of Primenumber Records'', Paolo Ribenboim, ISBN 0-387-94457-5
*P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
*''My Numbers, my Friends'', Paolo Ribenboim, ISBN 0-387-98911-0
*P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0.
 
[[Category:Mathematics Workgroup]]
[[Category:CZ Live]]

Latest revision as of 20:44, 20 February 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a Lucas sequence is a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. Lucas sequences have one common characteristic: they can be generated over quadratic equations of the form: with .

There exist two kinds of Lucas sequences:

  • Sequences with ,
  • Sequences with ,

where and are the solutions

and

of the quadratic equation .

Properties

  • The variables and , and the parameter and are interdependent. In particular, and .
  • For every sequence it holds that and .
  • For every sequence is holds that and .

For every Lucas sequence the following are true:

  • for all


Recurrence relation

The Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations

and


Fibonacci numbers and Lucas numbers

The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .

Lucas sequences and the prime numbers

If the natural number is a prime number then it holds that

  • divides
  • divides

Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .

The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.

Further reading