Green's function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(saved without checking LaTeX (processor down))
 
imported>Paul Wormer
No edit summary
Line 3: Line 3:
Let ''L''<sub>'''''x'''''</sub> be a given linear differential operator in ''n'' variables '''''x''''' = (''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub>), then the ''Green function of'' ''L''<sub>'''''x'''''</sub> is the function ''G''('''''x''''','''''y''''') defined by
Let ''L''<sub>'''''x'''''</sub> be a given linear differential operator in ''n'' variables '''''x''''' = (''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub>), then the ''Green function of'' ''L''<sub>'''''x'''''</sub> is the function ''G''('''''x''''','''''y''''') defined by
:<math>
:<math>
L_\mathbf{x} G(\mathbf{x},\mathbf{x}) = - \delta(\mathbf{x}- \mathbf{x}),
L_\mathbf{x} G(\mathbf{x},\mathbf{y}) = - \delta(\mathbf{x}- \mathbf{y}),
</math>
</math>
where &delta;('''''x'''''-'''''y''''') is the [[Dirac delta function]]. Once ''G''('''''x''''','''''y''''') is known, any differential equation involving ''L''<sub>'''''x'''''</sub> is formally solved,
where &delta;('''''x'''''-'''''y''''') is the [[Dirac delta function]]. Once ''G''('''''x''''','''''y''''') is known, any differential equation involving ''L''<sub>'''''x'''''</sub> is formally solved,
:<math>
:<math>
L_\mathbf{x} \,\phi(\mathbf{x}) = -\rho(\mathbf{x}) \quad\Longrightarrow\quad
L_\mathbf{x} \,\phi(\mathbf{x}) = -\rho(\mathbf{x}) \quad\Longrightarrow\quad
\phi(\mathbf{x}) = \int\; G(\mathbf{x},\mathbf{x})\; \rho(\mathbf{x})\; \mathrm{d}\mathbf{y}.
\phi(\mathbf{x}) = \int\; G(\mathbf{x},\mathbf{y})\; \rho(\mathbf{y})\; \mathrm{d}\mathbf{y}.
</math>
</math>
The proof is by verification,
The proof is by verification,
:<math>
:<math>
L_\mathbf{x} \,\phi(\mathbf{x}) = \int\;L_\mathbf{x} \; G(\mathbf{x},\mathbf{x})\; \rho(\mathbf{x})\; \mathrm{d}\mathbf{y} = - \int\;\delta(\mathbf{x}- \mathbf{x}) \mathrm{d}\mathbf{y} = -\rho(\mathbf{x})
L_\mathbf{x} \,\phi(\mathbf{x}) = \int\;L_\mathbf{x} \; G(\mathbf{x},\mathbf{y})\; \rho(\mathbf{y})\; \mathrm{d}\mathbf{y} = - \int\;\delta(\mathbf{x}- \mathbf{y})\;\rho(\mathbf{y}) \mathrm{d}\mathbf{y} = -\rho(\mathbf{x})
</math>
</math>
where  in the last step the defining property of the Dirac delta function is used.
where  in the last step the defining property of the Dirac delta function is used.
The Green function of a linear differential operator may be seen as its inverse, which becomes clear
from the matrix equation analogy. Let <math>\mathbb{L}</math> and <math>\mathbb{G}</math> be ''n''&times;''n'' matrices connected by
:<math>
\mathbb{L}  \mathbb{G}  = \mathbb{I}\quad \Leftrightarrow \quad  \left(\mathbb{L}  \mathbb{G}\right)_{ij} = -\delta_{ij},
</math>
then the solution of the matrix-vector equation is
:<math>
\mathbb{L}\boldsymbol{\phi} = - \boldsymbol{\rho}\quad \Longrightarrow \quad
\boldsymbol{\phi}_i = \sum_{j} \mathbb{G}_{ij} \boldsymbol{\rho}_j
</math>
==Reference==
P. Roman, ''Advanced Quantum Theory'', Addison-Wesley, Reading, Mass. (1965) Appendix 4.

Revision as of 08:14, 8 January 2009

In physics and mathematics, Green's function is an auxiliary function in the solution of linear partial differential equations. The function is named for the British mathematician George Green (1793 – 1841)

Let Lx be a given linear differential operator in n variables x = (x1, x2, ..., xn), then the Green function of Lx is the function G(x,y) defined by

where δ(x-y) is the Dirac delta function. Once G(x,y) is known, any differential equation involving Lx is formally solved,

The proof is by verification,

where in the last step the defining property of the Dirac delta function is used.

The Green function of a linear differential operator may be seen as its inverse, which becomes clear from the matrix equation analogy. Let and be n×n matrices connected by

then the solution of the matrix-vector equation is

Reference

P. Roman, Advanced Quantum Theory, Addison-Wesley, Reading, Mass. (1965) Appendix 4.