Disjoint union: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (link)
imported>Richard Pinch
(→‎References: supplied better ref: Potter)
Line 21: Line 21:


==References==
==References==
* {{cite book | author=Paul Halmos | authorlink=Paul Halmos | title=Naive set theory | series=The University Series in Undergraduate Mathematics | publisher=[[Van Nostrand Reinhold]] | year=1960 | pages=24 }}
* {{cite book | author=Michael D. Potter | title=Sets: An Introduction | publisher=[[Oxford University Press]] | year=1990 | isbn=0-19-853399-3 | pages=36-37 }}
* {{cite book | author=Keith J. Devlin | authorlink=Keith Devlin | title=Fundamentals of Contemporary Set Theory | series=Universitext | publisher=[[Springer-Verlag]] | year=1979 | isbn=0-387-90441-7 | pages=12 }}

Revision as of 16:34, 4 November 2008

In mathematics, the disjoint union of two sets X and Y is a set which contains "copies" of each of X and Y: it is denoted or, less often, .

There are injection maps in1 and in2 from X and Y to the disjoint union, which are injective functions with disjoint images.

If X and Y are disjoint, then the usual union is also a disjoint union. In general, the disjoint union can be realised in a number of ways, for example as

The disjoint union has a universal property: if there is a set Z with maps and , then there is a map such that the compositions and .

The disjoint union is commutative, in the sense that there is a natural bijection between and ; it is associative again in the sense that there is a natural bijection between and .

General unions

The disjoint union of any finite number of sets may be defined inductively, as

The disjoint union of a general family of sets Xλ as λ ranges over a general index set Λ may be defined as

References