DNA/Timelines: Difference between revisions
< DNA
Jump to navigation
Jump to search
imported>Joe Quick mNo edit summary |
imported>Meg Taylor No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 171: | Line 171: | ||
{{tlevent | {{tlevent | ||
|event='''1990''': [[BLAST algorithm]] developed to align DNA sequences and is the key to comparative genomics. | |event='''1990''': [[BLAST algorithm]] developed to align DNA sequences and is the key to comparative genomics. | ||
:The first | :The first occurrence of gene replacement therapy to repair a defective ADA gene in a four year old girls T-cells. | ||
|width=500px | |width=500px | ||
|color=#FFF | |color=#FFF | ||
Line 187: | Line 187: | ||
}} | }} | ||
{{tlevent | {{tlevent | ||
|event='''1998''': NIH begins the Single Nucleotide Polymorphism ( | |event='''1998''': NIH begins the [[single-nucleotide polymorphism|Single-Nucleotide Polymorphism]] (SNP) project to reveal human genetic variation. | ||
|width=500px | |width=500px | ||
|color=#FFF | |color=#FFF | ||
Line 212: | Line 212: | ||
}} | }} | ||
|} | |} | ||
<br/> | <br/> |
Latest revision as of 10:36, 15 September 2013
1866: Gregor Mendel identifies inheritance "factors" in pea plants.
1869: Friedrich Miescher isolates “nuclein” (DNA) from infected wounds.
1910: Thomas Hunt Morgan proposed a theory of sex-linked inheritance for the first mutation discovered in the fruit fly, Drosophila, white eye.
1913: Morgan and Alfred Sturtevant propose principle of gene linkage leading to the first genetic map.
1927: Hermann J. Muller Used x-rays to cause artificial gene mutations in Drosophila.
1928: Frederick Griffith demonstrates a "transforming factor" that can transmit the ability of bacteria to cause pneumonia in mice.
1929: Phoebus Levene describes building blocks of DNA, including four types of base A,C, T, and G.
1931: Harriet Creighton and Barbara McClintock Demonstrated the cytological proof for crossing-over in maize.
1941: George Beadle and Edward Tatum prove that a gene can produce its effect by regulating particular enzymes.
1944: Oswald Avery, Colin MacLeod, and Maclyn McCarty purified the transforming factor proposed in Griffith's experiment and show it is not protein, but DNA.
Late 1940s: Barbara McClintock developed the hypothesis of transposable elements.
1950: Alfred Hershey and Martha Chase use bacteriophage to confirm DNA is the molecule of heredity.
1951: Rosalind Franklin created a high quality X-ray diffraction photograph to reveal more detail of the repeating structure of DNA.
1953: Francis Crick and James Watson deduce the three-dimensional structure of the DNA molecule using a combination of experimental data and model building.
1958: Arthur Kornberg purified a DNA polymerase from bacteria, and used it to synthesis DNA in a test tube.
1966: Marshall Nirenberg and Gobind Khorana crack the genetic code linking the DNA sequence of nucleotides to the protein sequence of amino acid residues.
1967: Discovery of DNA ligase.
1969: FISH
1970: Howard Temin discovered the of activity of reverse transcriptase.
1972: Paul Berg creates the first recombinant DNA molecules, using restriction enzymes. This technology will be the beginning of the biotechnology industry.
1973: Annie Chang and Stanley Cohen showed that a recombinant DNA molecule can be maintained and replicated in E. coli.
1975: An International meeting at Asilomar, California provided guidelines regulating recombinant DNA experimentation.
1976: Herbert Boyer cofounds Genentech, the first firm founded in the United States to apply recombinant DNA technology
1977: Frederick Sanger, Allan Maxam, and Walter Gilbert developed the chain termination (dideoxy) method for sequencing DNA.
1978: Somatostatin, which regulates human growth hormones, is the first human protein made using recombinant technology.
1980: Mark Skolnick, Ray White, David Botstein, and Ronald Davis create RFLP marker map of human genome.
1981: Three independent research teams announced the discovery of human oncogenes (cancer genes).
1983: James Gusella demonstrate that the Huntington's disease gene is on chromosome 4.
1985: Kary Mullis published a paper describing the polymerase chain reaction (PCR) a technique to amplify specific DNA sequences from minutes quantities of starting material.
1986: Leroy Hood and Lloyd Smith automate DNA sequencing with the goal of sequencing whole genomes.
1987: US DOE officially begins human genome project.
1990: BLAST algorithm developed to align DNA sequences and is the key to comparative genomics.
1993: FlavrSavr tomatoes are the first genetically modified organisms to be marketed. They were engineered to ripen more slowly for longer shelf life.
1995: Patrick Brown and Stanford University colleagues invent DNA microarray technology.
1998: NIH begins the Single-Nucleotide Polymorphism (SNP) project to reveal human genetic variation.
1999: First human chromosome sequence published.
2000: Fruit fly genome sequenced using Celera’s whole-genome shotgun method.
2001: Science and Nature publish annotations and analyses of human genome.
2005: HapMap published giving a huge resource of SNP's and information relating to human variation.
|