Compactness axioms: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(new entry, just a stub)
 
imported>Richard Pinch
(defined some terms)
Line 2: Line 2:
In [[general topology]], the important property of '''[[compact set|compactness]]''' has a number of related properties.
In [[general topology]], the important property of '''[[compact set|compactness]]''' has a number of related properties.


The definitions require some preliminary terminology.  A ''cover'' of a set ''X'' is a family <math>\mathcal{U} = \{ U_\alpha : \alpha \in A \}</math> such that the union <math>\bigcup_{\alpha \in A} U_\alpha</math> is equal to ''X''.  A ''subcover'' is a subfamily <math>\mathcal{S} = \{ U_\alpha : \alpha \in B \}</math> where ''B'' is a subset of ''A''.  A ''refinement'' is a cover <math>\mathcal{R} = \{ V_\beta : \beta \in B \}</math> such that for each β in ''B'' there is an α in ''A'' such that <math>V_\beta \subseteq U_\alpha</math>.
==Definitions==
We say that a [[topological space]] ''X'' is
We say that a [[topological space]] ''X'' is
* '''Compact''' if every cover by [[open set]]s has a finite subcover.
* '''Compact''' if every cover by [[open set]]s has a finite subcover.

Revision as of 14:45, 30 October 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In general topology, the important property of compactness has a number of related properties.

The definitions require some preliminary terminology. A cover of a set X is a family such that the union is equal to X. A subcover is a subfamily where B is a subset of A. A refinement is a cover such that for each β in B there is an α in A such that .

Definitions

We say that a topological space X is

  • Compact if every cover by open sets has a finite subcover.
  • Countably compact if every countable cover by open sets has a finite subcover.
  • Lindelöf if every cover by open sets has a countable subcover.
  • Sequentially compact if every convergent sequence has a convergent subsequence.
  • Paracompact if every cover by open sets has an open locally finite refinement.
  • Metacompact if every cover by open sets has a point finite open refinement.
  • Orthocompact if every cover by open sets has an interior preserving open refinement.
  • σ-compact if it is the union of countably many compact subspaces.

References