Characteristic subgroup: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Vipul Naik
No edit summary
 
imported>Todd Coles
No edit summary
Line 20: Line 20:


[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]
[[Category:CZ Live]]

Revision as of 09:05, 29 August 2007

Definition

A subgroup H of a group G is termed characteristic if the following holds: Given any automorphism of G and any element h in H, .

Any characteristic subgroup of a group is normal.

Some elementary examples and non-examples

Functions giving subgroups

Any procedure that, for any given group, outputs a unique subgroup of it, must output a characteristic subgroup. Thus, for instance, the center of any group is a characteristic subgroup. The center is defined as the set of elements that commute with all elements. It is characteristic because the property of commuting with all elements does not change upon performing automorphisms.

Similarly, the Frattini subgroup, which is defined as the intersection of all maximal subgroups, is characteristic because any automorphism will take a maximal subgroup to a maximal subgroup.

Non-examples

Since every characteristic subgroup is normal, an easy way to find examples of subgroups which are not characteristic is to find subgroups which are not normal. For instance, the subgroup of order two in the symmetric group on three elements, is a non-normal subgroup.

There are also examples of normal subgroups which are not characteristic. The easiest class of examples is as follows. Take any nontrivial group G. Then consider G as a subgroup of . The first copy G is a normal subgroup, but it is not characteristic, because it is not invariant under the exchange automorphism .