Carmichael number: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Karsten Meyer
imported>Karsten Meyer
Line 12: Line 12:


[[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers <math>\scriptstyle 6n+1\ </math>, <math>\scriptstyle 12n+1\ </math> and <math>\scriptstyle 18n+1\ </math> are prime numbers, the product <math>\scriptstyle M_3(n) = (6n+1)\cdot (12n+1)\cdot (18n+1)</math> is a Carmichael number. Equivalent to this is that if <math>\scriptstyle m\ </math>, <math>\scriptstyle 2m-1\ </math> and <math>\scriptstyle 3m-2</math> are prime numbers, then the product <math>\scriptstyle m\cdot (2m-1)\cdot (3m-2)</math> is a Carmichael number.
[[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers <math>\scriptstyle 6n+1\ </math>, <math>\scriptstyle 12n+1\ </math> and <math>\scriptstyle 18n+1\ </math> are prime numbers, the product <math>\scriptstyle M_3(n) = (6n+1)\cdot (12n+1)\cdot (18n+1)</math> is a Carmichael number. Equivalent to this is that if <math>\scriptstyle m\ </math>, <math>\scriptstyle 2m-1\ </math> and <math>\scriptstyle 3m-2</math> are prime numbers, then the product <math>\scriptstyle m\cdot (2m-1)\cdot (3m-2)</math> is a Carmichael number.
To construct Carmichael numbers with <math>\scriptstyle M_3(n) = (6n+1)\cdot (12n+1)\cdot (18n+1)</math>, you could only use numbers <math>n\ </math> which ends with 0, 1, 5 or 6.


This way to construct Carmichael numbers could expand to <math>M_k(n)=(6n+1)(12n+1)\prod_{i=1}^{k-2}(9\cdot 2^in+1)</math> with the restiction, that for <math>(36\cdot 2^jm + 1)</math> the variable <math>m\ </math> is divisible bei <math>2^j\ </math>
This way to construct Carmichael numbers could expand to <math>M_k(n)=(6n+1)(12n+1)\prod_{i=1}^{k-2}(9\cdot 2^in+1)</math> with the restiction, that for <math>(36\cdot 2^jm + 1)</math> the variable <math>m\ </math> is divisible bei <math>2^j\ </math>

Revision as of 06:36, 5 February 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
This editable Main Article is under development and subject to a disclaimer.

A Carmichael number is a composite number named after the mathematician Robert Daniel Carmichael. A Carmichael number satisfies for every integer that is divisible by . A Carmichael number c also satisfies the congruence , if . The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601 and 8911. In 1994 Pomerance, Alford and Granville proved that there exist infinitely many Carmichael numbers.

Properties of a Carmichael number

  • Every Carmichael number is square-free and has at least three different prime factors
  • For every Carmichael number c it holds that is divisible by for every one of its prime factors .
  • Every Carmichael number is an Euler pseudoprime.
  • Every absolute Euler pseudoprime is a Carmichael number.

Chernick's Carmichael numbers

J. Chernick found in 1939 a way to construct Carmichael numbers[1]. If, for a natural number n, the three numbers , and are prime numbers, the product is a Carmichael number. Equivalent to this is that if , and are prime numbers, then the product is a Carmichael number.

To construct Carmichael numbers with , you could only use numbers which ends with 0, 1, 5 or 6.

This way to construct Carmichael numbers could expand to with the restiction, that for the variable is divisible bei

References and notes

Further reading

Links