Brain evolution: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniel Mietchen
(linking back to course page)
imported>Annemarie Brunswicker
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
{{EZarticle-open-auto|CZ:Guidel 2008 summer course on Music and Brain‎}}
{{EZarticle-open-auto|CZ:Guidel 2008 summer course on Music and Brain‎}}
== Brain Evolution ==
Like everything else in nature, the human brain is a structure that has adapted over time – moving from the simple to the complex – to perform a variety of vital functions. At the same time, selection procedures took place, enhancing the functional capabilities of the CNS in accordance with the changing needs of humankind.
'''Vertebrate Brain Evolution'''
The classical view of telencephalic evolution proposes that the fish palaeostriatum is the antecedent of the human globus pallidus, the amphibian archistriatum is the antecedent of the human amygdala and the reptile neostriatum is the antecedent of the human caudate and putamen. Birds are thought to have unique additional basal ganglia, the hyperstriastum. Accordingly, the fish palaeocortex was thought to be the antecedent of the human olfactory cortex, the reptile archicortex to be the antecedent of the human hippocampus, while birds were proposed to have no further pallial regions. The neocortex was regarded as the unique and latest achievement of mammals. Since the 1960s and 1970s however, the classical view of brain evolution has been increasingly challenged.
It is known that evolution is not linear, and thus one cannot assume that more recently evolved species are more advanced. According to the Avian Brain Nomenclature Consortium, the avian palaeostriatum augmentatum is homologous to the mammalian neostriatum, the avian palaeostriatum primitivum is homologous to the mammalian globus pallidus, and the avian hyperstriatum, neostriatum and archistriatum may be homologous to mammalial pallial regions. Moreover, recent findings suggest that mammals did not arise from reptiles, indicating that the reptilian nuclear pallial organisation cannot represent the ancestral conditions for mammals as was previously assumed. It is also known that telencephala of fish do not only contribute to olfactory functions and that fish have a hippocampus whose main function is not olfaction, but memory and spatial mapping. Overall, evidence indicates that there are pallial, striatal and pallidal structures in most or all vertebrates. It is apparent that the organisation of the basal ganglia amongst vertebrates is conserved, whereas the organisation of the pallial domains is more varied.
'''Evolution and Intelligence: What is different about the human brain?'''
A good measure of intelligence is ''“mental or behavioural flexibility resulting in the appearance of novel solutions that are not part of the animal’s normal repertoire”''. Of all the proposed neural correlates of intelligence, general properties such as brain size, relative brain size, encephalization and prefrontal cortex are not the optimal predictors for intelligence. It is the number of cortical neurons combined with a high conduction velocity that correlates best with intelligence. Humans do not have the largest brain or cortex (either in absolute or relative terms) but have the largest number of neurons and the greatest information processing capacity. In addition, highly specialized structures in the human prefrontal cortex may also play an important role.
As intelligence has evolved in different classes, orders and families of vertebrates, it does not seem to have evolved in an orthogenetic way (i.e. that a single line culminates in Homo sapiens for example) but in a parallel way. Amongst vertebrates, humans are more intelligent than great apes, cetaceans and elephants, while these species are probably more intelligent than monkeys, and monkeys more intelligent than prosimians and the remaining animals. On the other hand, it is not clear whether humans have unique properties. Aspects of the most discussed human properties (tool use, tool-making, grammatical language, consciousness, self-awareness, imitation, deception and theory of mind) are also recognized in other non-human primates and large-brained animals. Concerning the primate’s ability to learn languages, the existence of precursors to Wernicke’s and Broca’s areas in non-human primates is currently being discussed.
Overall, the outstanding intelligence of humans seems not to have resulted from qualitative differences, but rather from a combination and subsequent improvement of characteristics, including the  theory of mind, language and consciousness.
'''Evolution at genetic and molecular level'''
Considering the great similarity between the chimpanzee and human genome,  evolutionary changes in anatomy are more likely based on changes in control mechanisms of gene expression rather than sequence changes in proteins.
Apparently, mutations with greater pleiotropic effects are a less common source of variation due to their deleterious effects. Several genetic features (gene duplication, regulatory sequence expansion and diversification, and alternative protein isoform expression) increase variation and minimize pleiotropy associated with evolutionary mutations by contributing to compartmentation and redundancy. These mechanisms arise in coding sequences, whereas variation in promoter use or choice of splicing site arises in regulatory sequences. Several studies indicate that evolutionary mutations of regulatory sequences take place at loci encoding transcription factors or cis-regulatory elements. These evolutionary mutations are responsible for gain, loss or modification of morphological traits and provide a mechanism to change one trait while preserving the role of pleiotropic genes in other processes. There are some examples of evolutionary changes in anatomy due to gene duplication and mutation in coding sequences (for example changes in Hox-proteins being associated with shifts in form or development mechanisms). However, these events are relatively rare and may have accompanying deleterious pleiotropic effects, thereby limiting their contribution to evolution under natural selection.
Overall, both regulatory sequences and coding regions contribute to the evolution of anatomy, but it can be concluded that morphological evolution occurs primarily through changes in regulatory sequences.
In contrast, there is ample evidence that changes arising in coding sequences play a crucial role in several important physiological differences between species. Regarding the synapse proteome, a great expansion of protein types due to gene family duplication and diversification has been revealed. Data suggests that most functional synaptic proteins were present in metazoans. This proto-synapse, with its pathways responding to environmental cues and performing simple cell-cell communication, has been elaborated on during the evolution of invertebrates and vertebrates. It is very likely that the increase in complexity in molecular signalling of vertebrates, along with neuron number and connectivity, contributes to their great behavioural capacity. Even small changes in components of synaptic signalling have a great multiplicative effect on neuronal function. Moreover, comparisons of synapse-signalling complexes between ''Drosophila'' and mice indicate that additional species-specific adaptations of common synaptic subcomponents have diverged by duplication, recruitment and replacement of genes. Regional specialization with differential signal processing in mouse brains was also discovered. Different brain regions express a similar set of postsynaptic proteins, but in different combinations of expression levels. Recently-evolved genes encoding upstream molecules and structural components of signalling pathways seem to contribute most to diversity.

Revision as of 05:15, 25 August 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Nuvola apps kbounce green.png
Nuvola apps kbounce green.png
This article is currently being developed as part of an Eduzendium student project. The project's homepage is at CZ:Guidel 2008 summer course on Music and Brain‎. One of the goals of the course is to provide students with insider experience in collaborative educational projects, and so you are warmly invited to join in here, or to leave comments on the discussion page. However, please refrain from removing this notice.
Besides, many other Eduzendium articles welcome your collaboration!



Brain Evolution

Like everything else in nature, the human brain is a structure that has adapted over time – moving from the simple to the complex – to perform a variety of vital functions. At the same time, selection procedures took place, enhancing the functional capabilities of the CNS in accordance with the changing needs of humankind.

Vertebrate Brain Evolution

The classical view of telencephalic evolution proposes that the fish palaeostriatum is the antecedent of the human globus pallidus, the amphibian archistriatum is the antecedent of the human amygdala and the reptile neostriatum is the antecedent of the human caudate and putamen. Birds are thought to have unique additional basal ganglia, the hyperstriastum. Accordingly, the fish palaeocortex was thought to be the antecedent of the human olfactory cortex, the reptile archicortex to be the antecedent of the human hippocampus, while birds were proposed to have no further pallial regions. The neocortex was regarded as the unique and latest achievement of mammals. Since the 1960s and 1970s however, the classical view of brain evolution has been increasingly challenged.

It is known that evolution is not linear, and thus one cannot assume that more recently evolved species are more advanced. According to the Avian Brain Nomenclature Consortium, the avian palaeostriatum augmentatum is homologous to the mammalian neostriatum, the avian palaeostriatum primitivum is homologous to the mammalian globus pallidus, and the avian hyperstriatum, neostriatum and archistriatum may be homologous to mammalial pallial regions. Moreover, recent findings suggest that mammals did not arise from reptiles, indicating that the reptilian nuclear pallial organisation cannot represent the ancestral conditions for mammals as was previously assumed. It is also known that telencephala of fish do not only contribute to olfactory functions and that fish have a hippocampus whose main function is not olfaction, but memory and spatial mapping. Overall, evidence indicates that there are pallial, striatal and pallidal structures in most or all vertebrates. It is apparent that the organisation of the basal ganglia amongst vertebrates is conserved, whereas the organisation of the pallial domains is more varied.

Evolution and Intelligence: What is different about the human brain?

A good measure of intelligence is “mental or behavioural flexibility resulting in the appearance of novel solutions that are not part of the animal’s normal repertoire”. Of all the proposed neural correlates of intelligence, general properties such as brain size, relative brain size, encephalization and prefrontal cortex are not the optimal predictors for intelligence. It is the number of cortical neurons combined with a high conduction velocity that correlates best with intelligence. Humans do not have the largest brain or cortex (either in absolute or relative terms) but have the largest number of neurons and the greatest information processing capacity. In addition, highly specialized structures in the human prefrontal cortex may also play an important role.

As intelligence has evolved in different classes, orders and families of vertebrates, it does not seem to have evolved in an orthogenetic way (i.e. that a single line culminates in Homo sapiens for example) but in a parallel way. Amongst vertebrates, humans are more intelligent than great apes, cetaceans and elephants, while these species are probably more intelligent than monkeys, and monkeys more intelligent than prosimians and the remaining animals. On the other hand, it is not clear whether humans have unique properties. Aspects of the most discussed human properties (tool use, tool-making, grammatical language, consciousness, self-awareness, imitation, deception and theory of mind) are also recognized in other non-human primates and large-brained animals. Concerning the primate’s ability to learn languages, the existence of precursors to Wernicke’s and Broca’s areas in non-human primates is currently being discussed. Overall, the outstanding intelligence of humans seems not to have resulted from qualitative differences, but rather from a combination and subsequent improvement of characteristics, including the theory of mind, language and consciousness.

Evolution at genetic and molecular level

Considering the great similarity between the chimpanzee and human genome, evolutionary changes in anatomy are more likely based on changes in control mechanisms of gene expression rather than sequence changes in proteins. Apparently, mutations with greater pleiotropic effects are a less common source of variation due to their deleterious effects. Several genetic features (gene duplication, regulatory sequence expansion and diversification, and alternative protein isoform expression) increase variation and minimize pleiotropy associated with evolutionary mutations by contributing to compartmentation and redundancy. These mechanisms arise in coding sequences, whereas variation in promoter use or choice of splicing site arises in regulatory sequences. Several studies indicate that evolutionary mutations of regulatory sequences take place at loci encoding transcription factors or cis-regulatory elements. These evolutionary mutations are responsible for gain, loss or modification of morphological traits and provide a mechanism to change one trait while preserving the role of pleiotropic genes in other processes. There are some examples of evolutionary changes in anatomy due to gene duplication and mutation in coding sequences (for example changes in Hox-proteins being associated with shifts in form or development mechanisms). However, these events are relatively rare and may have accompanying deleterious pleiotropic effects, thereby limiting their contribution to evolution under natural selection. Overall, both regulatory sequences and coding regions contribute to the evolution of anatomy, but it can be concluded that morphological evolution occurs primarily through changes in regulatory sequences.

In contrast, there is ample evidence that changes arising in coding sequences play a crucial role in several important physiological differences between species. Regarding the synapse proteome, a great expansion of protein types due to gene family duplication and diversification has been revealed. Data suggests that most functional synaptic proteins were present in metazoans. This proto-synapse, with its pathways responding to environmental cues and performing simple cell-cell communication, has been elaborated on during the evolution of invertebrates and vertebrates. It is very likely that the increase in complexity in molecular signalling of vertebrates, along with neuron number and connectivity, contributes to their great behavioural capacity. Even small changes in components of synaptic signalling have a great multiplicative effect on neuronal function. Moreover, comparisons of synapse-signalling complexes between Drosophila and mice indicate that additional species-specific adaptations of common synaptic subcomponents have diverged by duplication, recruitment and replacement of genes. Regional specialization with differential signal processing in mouse brains was also discovered. Different brain regions express a similar set of postsynaptic proteins, but in different combinations of expression levels. Recently-evolved genes encoding upstream molecules and structural components of signalling pathways seem to contribute most to diversity.