Binary numeral system: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Markus Baumeister
m (forgot a link)
imported>Subpagination Bot
m (Add {{subpages}} and remove any categories (details))
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
The binary numbering system (also referred to as base-2, or [[radix]]-2), represents [[number]]s using only the [[digit]]s 0 and 1. This is in contrast with the more familiar [[decimal system]] (a.k.a. base-10, [[radix]]-10) which uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In the decimal system, each digit position represents a [[power of]] ten. The number <math>10</math> represents the value consisting of one set of tens (<math>10^1</math>), and no sets of ones (<math>10^0</math>). Equivalently in the binary numbering system each digit position represents a power of two. The same number, <math>10</math> represents the value consisting of one set of twos (<math>2^1</math>) and no sets of ones (<math>2^0</math>) which is represented by the number 2 in the decimal system. When the numbering system used for a number is in question, one can write the radix as a subscript to the number as done in the following table.
{{subpages}}
 
The '''binary number system''', also referred to as base-2, or [[radix]]-2, represents [[number]]s using only the [[digit]]s 0 and 1. This is in contrast with the more familiar [[decimal numeral system]] (a.k.a. base-10, [[radix]]-10) which uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In the binary system, each digit position represents a power of two. The numeral "<math>10</math>" in binary represents the value consisting of one set of twos (<math>2^1</math>) and no sets of ones (<math>2^0</math>), which we are accustomed to seeing represented as "2". This is analogous to the decimal system, where each digit position represents a [[power of]] ten: the numeral "<math>10</math>", for example, represents the value consisting of one set of tens (<math>10^1</math>), and no sets of ones (<math>10^0</math>).   When the numeral system used for a number is in question, one can write the radix as a subscript to the number, as is done in the following table:


<table cellpadding="3" cellspacing="0" border="1">
<table cellpadding="3" cellspacing="0" border="1">
<tr>
<th>Binary</th>
<td><math>100_2 = (1 \times 2^2)+(0 \times 2^1)+(0 \times 2^0)= 4_{10} + 0 + 0 = 4_{10}</math></td>
</tr>
<tr>
<tr>
<th>Decimal</th>
<th>Decimal</th>
<td><math>100_{10} = (1 \times 10^2) + (0 \times 10^1) + (0 \times 10^0)</math></td>
<td><math>100_{10} = (1 \times 10^2) + (0 \times 10^1) + (0 \times 10^0)</math></td>
</tr>
</tr>
<tr>
<th>Binary</th>
<td><math>100_2 = (1 \times 2^2)+(0 \times 2^1)+(0 \times 2^0)= 4_{10} + 0 + 0 = 4_{10}</math></td>
</tr>
</table>
</table>


Because the number of digits in the binary representation of a value can grow quickly, binary values are often represented in the [[hexadecimal numbering system]] (base-16), which uses the digits 0 through 9, followed by the letters A through F to represent the values ten, eleven, twelve, thirteen, fourteen, and fifteen.
==Binary arithmetic==
Arithmetic with binary numerals is similar to arithmetic with decimal numerals, except that the addition and multiplication tables are much simpler:
<table cellpadding="10" border="0">
<tr><td>
<table cellpadding="3" cellspacing="1" border="1">
<tr align="right"><td><math>+</math></td><td><math>0</math></td><td><math>1</math></td></tr>
<tr align="right"><td><math>0</math></td><td><math>0</math></td><td><math>1</math></td></tr>
<tr align="right"><td><math>1</math></td><td><math>1</math></td><td><math>10</math></td></tr>
</table>
</td><td>
<table cellpadding="3" cellspacing="1" border="1">
<tr align="right"><td><math>\times</math></td><td><math>0</math></td><td><math>1</math></td></tr>
<tr align="right"><td><math>0</math></td><td><math>0</math></td><td><math>0</math></td></tr>
<tr align="right"><td><math>1</math></td><td><math>0</math></td><td><math>1</math></td></tr>
</table>
</td></tr></table>
 
Division and subtraction are performed in the same way as for decimal numerals, but using the corresponding rules for binary addition and multiplication. Non-integer quantities can be represented as binary digits to the right of the binary point. For example, <math>3/16 = 0.1875_{10} = 0.0011_2 = (0 \times 2^0)+(0 \times 2^{-1})+(0 \times 2^{-2})+(1 \times 2^{-3})+(1 \times 2^{-4})</math>
 
Repeating binary expansions also occur, for any fraction where the denominator is not a power of 2. For example, <math>1/5 = 0.001100110011_2</math> (with 0011 repeating).
 
Irrational numbers can also be expressed, and will have irregular distributions of digits. For example, <math>\pi = 11.001001000011111..._2</math>
 
==Use in computing==
The binary system is used in most electronic computers, as the values of 0 and 1 can be easily represented by a low and a high voltage in a circuit (i.e., by an "on/off" switch). A single digit of a binary numeral is referred to as a [[bit (computing)|bit]], short for '''''bi'''nary digi'''t'''''. (The term ''bit'' was coined in 1947 at [[Bell Laboratories]].) A bit can be a measure of data size, or a measure of [[information entropy]], which are often not equal in size.
 
===Other representations===
Because the number of digits in the binary representation of a value can grow quickly, when human readability is desired binary values are often represented in the [[octal numeral system]] (base 8) or the [[hexadecimal numeral system]] (base 16). Octal uses the digits 0 through 7, while hexadecimal uses the digits 0 through 9, followed by the letters A through F to represent the values ten, eleven, twelve, thirteen, fourteen, and fifteen.
 
Binary numerals can be converted to octal by grouping the binary digits in groups of three beginning at the ones place, with each group of three binary digits converting to a single octal digit. Similarly, binary numerals can be converted to hexadecimal by grouping the binary digits in groups of four beginning at the ones place, with each group of four binary digits converting to a single hexadecimal digit.  


<table cellpadding="3" cellspacing="0" border="1">
<table cellpadding="3" cellspacing="0" border="1">
Line 18: Line 49:
<th>Decimal</th>
<th>Decimal</th>
<th>Binary</th>
<th>Binary</th>
<th>Octal</th>
<th>Hexadecimal</th>
<th>Hexadecimal</th>
</tr>
</tr>


<tr>
<tr>
<td valign="top" align="right">0</td>
<td valign="top" align="right">0</td>
<td valign="top" align="right">0</td>
<td valign="top" align="right">0</td>
<td valign="top" align="right">0</td>
Line 27: Line 60:
</tr>
</tr>
<tr>
<tr>
<td valign="top" align="right">1</td>
<td valign="top" align="right">1</td>
<td valign="top" align="right">1</td>
<td valign="top" align="right">1</td>
<td valign="top" align="right">1</td>
Line 34: Line 68:
<td valign="top" align="right">2</td>
<td valign="top" align="right">2</td>
<td valign="top" align="right">10</td>
<td valign="top" align="right">10</td>
<td valign="top" align="right">2</td>
<td valign="top" align="right">2</td>
<td valign="top" align="right">2</td>
</tr>
</tr>
Line 39: Line 74:
<td valign="top" align="right">3</td>
<td valign="top" align="right">3</td>
<td valign="top" align="right">11</td>
<td valign="top" align="right">11</td>
<td valign="top" align="right">3</td>
<td valign="top" align="right">3</td>
<td valign="top" align="right">3</td>
</tr>
</tr>
Line 44: Line 80:
<td valign="top" align="right">4</td>
<td valign="top" align="right">4</td>
<td valign="top" align="right">100</td>
<td valign="top" align="right">100</td>
<td valign="top" align="right">4</td>
<td valign="top" align="right">4</td>
<td valign="top" align="right">4</td>
</tr>
</tr>
Line 49: Line 86:
<td valign="top" align="right">5</td>
<td valign="top" align="right">5</td>
<td valign="top" align="right">101</td>
<td valign="top" align="right">101</td>
<td valign="top" align="right">5</td>
<td valign="top" align="right">5</td>
<td valign="top" align="right">5</td>
</tr>
</tr>
Line 54: Line 92:
<td valign="top" align="right">6</td>
<td valign="top" align="right">6</td>
<td valign="top" align="right">110</td>
<td valign="top" align="right">110</td>
<td valign="top" align="right">6</td>
<td valign="top" align="right">6</td>
<td valign="top" align="right">6</td>
</tr>
</tr>
Line 59: Line 98:
<td valign="top" align="right">7</td>
<td valign="top" align="right">7</td>
<td valign="top" align="right">111</td>
<td valign="top" align="right">111</td>
<td valign="top" align="right">7</td>
<td valign="top" align="right">7</td>
<td valign="top" align="right">7</td>
</tr>
</tr>
Line 64: Line 104:
<td valign="top" align="right">8</td>
<td valign="top" align="right">8</td>
<td valign="top" align="right">1000</td>
<td valign="top" align="right">1000</td>
<td valign="top" align="right">10</td>
<td valign="top" align="right">8</td>
<td valign="top" align="right">8</td>
</tr>
</tr>
Line 69: Line 110:
<td valign="top" align="right">9</td>
<td valign="top" align="right">9</td>
<td valign="top" align="right">1001</td>
<td valign="top" align="right">1001</td>
<td valign="top" align="right">11</td>
<td valign="top" align="right">9</td>
<td valign="top" align="right">9</td>
</tr>
</tr>
Line 74: Line 116:
<td valign="top" align="right">10</td>
<td valign="top" align="right">10</td>
<td valign="top" align="right">1010</td>
<td valign="top" align="right">1010</td>
<td valign="top" align="right">12</td>
<td valign="top" align="right">A</td>
<td valign="top" align="right">A</td>
</tr>
</tr>
Line 79: Line 122:
<td valign="top" align="right">11</td>
<td valign="top" align="right">11</td>
<td valign="top" align="right">1011</td>
<td valign="top" align="right">1011</td>
<td valign="top" align="right">13</td>
<td valign="top" align="right">B</td>
<td valign="top" align="right">B</td>
</tr>
</tr>
Line 84: Line 128:
<td valign="top" align="right">12</td>
<td valign="top" align="right">12</td>
<td valign="top" align="right">1100</td>
<td valign="top" align="right">1100</td>
<td valign="top" align="right">14</td>
<td valign="top" align="right">C</td>
<td valign="top" align="right">C</td>
</tr>
</tr>
Line 89: Line 134:
<td valign="top" align="right">13</td>
<td valign="top" align="right">13</td>
<td valign="top" align="right">1101</td>
<td valign="top" align="right">1101</td>
<td valign="top" align="right">15</td>
<td valign="top" align="right">D</td>
<td valign="top" align="right">D</td>
</tr>
</tr>
Line 94: Line 140:
<td valign="top" align="right">14</td>
<td valign="top" align="right">14</td>
<td valign="top" align="right">1110</td>
<td valign="top" align="right">1110</td>
<td valign="top" align="right">16</td>
<td valign="top" align="right">E</td>
<td valign="top" align="right">E</td>
</tr>
</tr>
Line 99: Line 146:
<td valign="top" align="right">15</td>
<td valign="top" align="right">15</td>
<td valign="top" align="right">1111</td>
<td valign="top" align="right">1111</td>
<td valign="top" align="right">17</td>
<td valign="top" align="right">F</td>
<td valign="top" align="right">F</td>
</tr>
</tr>
Line 104: Line 152:
<td valign="top" align="right">16</td>
<td valign="top" align="right">16</td>
<td valign="top" align="right">10000</td>
<td valign="top" align="right">10000</td>
<td valign="top" align="right">20</td>
<td valign="top" align="right">10</td>
<td valign="top" align="right">10</td>
</tr>
<tr>
<td valign="top" align="right">17</td>
<td valign="top" align="right">10001</td>
<td valign="top" align="right">21</td>
<td valign="top" align="right">11</td>
</tr>
<tr>
<td valign="top" align="right">20</td>
<td valign="top" align="right">10100</td>
<td valign="top" align="right">24</td>
<td valign="top" align="right">14</td>
</tr>
<tr>
<td valign="top" align="right">25</td>
<td valign="top" align="right">11001</td>
<td valign="top" align="right">31</td>
<td valign="top" align="right">19</td>
</tr>
<tr>
<td valign="top" align="right">32</td>
<td valign="top" align="right">100000</td>
<td valign="top" align="right">40</td>
<td valign="top" align="right">20</td>
</tr>
<tr>
<td valign="top" align="right">40</td>
<td valign="top" align="right">101000</td>
<td valign="top" align="right">50</td>
<td valign="top" align="right">28</td>
</tr>
<tr>
<td valign="top" align="right">49</td>
<td valign="top" align="right">110001</td>
<td valign="top" align="right">61</td>
<td valign="top" align="right">31</td>
</tr>
<tr>
<td valign="top" align="right">63</td>
<td valign="top" align="right">111111</td>
<td valign="top" align="right">77</td>
<td valign="top" align="right">3F</td>
</tr>
<tr>
<td valign="top" align="right">99</td>
<td valign="top" align="right">1100011</td>
<td valign="top" align="right">143</td>
<td valign="top" align="right">63</td>
</tr>
</tr>
</table>
</table>
[[Category:Mathematics Workgroup]]
[[Category:Computers Workgroup]]

Latest revision as of 08:17, 25 September 2007

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The binary number system, also referred to as base-2, or radix-2, represents numbers using only the digits 0 and 1. This is in contrast with the more familiar decimal numeral system (a.k.a. base-10, radix-10) which uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In the binary system, each digit position represents a power of two. The numeral "" in binary represents the value consisting of one set of twos () and no sets of ones (), which we are accustomed to seeing represented as "2". This is analogous to the decimal system, where each digit position represents a power of ten: the numeral "", for example, represents the value consisting of one set of tens (), and no sets of ones (). When the numeral system used for a number is in question, one can write the radix as a subscript to the number, as is done in the following table:

Binary
Decimal

Binary arithmetic

Arithmetic with binary numerals is similar to arithmetic with decimal numerals, except that the addition and multiplication tables are much simpler:

Division and subtraction are performed in the same way as for decimal numerals, but using the corresponding rules for binary addition and multiplication. Non-integer quantities can be represented as binary digits to the right of the binary point. For example,

Repeating binary expansions also occur, for any fraction where the denominator is not a power of 2. For example, (with 0011 repeating).

Irrational numbers can also be expressed, and will have irregular distributions of digits. For example,

Use in computing

The binary system is used in most electronic computers, as the values of 0 and 1 can be easily represented by a low and a high voltage in a circuit (i.e., by an "on/off" switch). A single digit of a binary numeral is referred to as a bit, short for binary digit. (The term bit was coined in 1947 at Bell Laboratories.) A bit can be a measure of data size, or a measure of information entropy, which are often not equal in size.

Other representations

Because the number of digits in the binary representation of a value can grow quickly, when human readability is desired binary values are often represented in the octal numeral system (base 8) or the hexadecimal numeral system (base 16). Octal uses the digits 0 through 7, while hexadecimal uses the digits 0 through 9, followed by the letters A through F to represent the values ten, eleven, twelve, thirteen, fourteen, and fifteen.

Binary numerals can be converted to octal by grouping the binary digits in groups of three beginning at the ones place, with each group of three binary digits converting to a single octal digit. Similarly, binary numerals can be converted to hexadecimal by grouping the binary digits in groups of four beginning at the ones place, with each group of four binary digits converting to a single hexadecimal digit.

Decimal Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
20 10100 24 14
25 11001 31 19
32 100000 40 20
40 101000 50 28
49 110001 61 31
63 111111 77 3F
99 1100011 143 63