Associated Legendre function

From Citizendium
Revision as of 09:14, 22 August 2007 by imported>Paul Wormer (→‎Differential equation)
Jump to navigation Jump to search

In mathematics and physics, an associated Legendre function Pl(m) is related to a Legendre polynomial Pl by the following equation

For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.

The associated Legendre polynomials are important in quantum mechanics and potential theory.

Differential equation

Define

where Pl(x) is a Legendre polynomial. Differentiating the Legendre differential equation:

m times gives an equation for Π(m)l

After substitution of

we find, after multiplying through with , that the associated Legendre differential equation holds for the associated Legendre functions

In physical applications usually x = cosθ, then then associated Legendre differential equation takes the form

Extension to negative m

By the Rodrigues formula, one obtains

This equation allows extension of the range of m to: -lml.

Since the associated Legendre equation is invariant under the substitution m → -m, the equations for Pl( ±m), resulting from this expression, are proportional.

To obtain the proportionality constant we consider

and we bring the factor (1-x²)-m/2 to the other side. Equate the coefficients of the same powers of x on the left and right hand side of

and it follows that the proportionality constant is

so that the associated Legendre functions of same |m| are related to each other by

Note that the phase factor (-1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1-x²)m.