Abscess: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Robert Badgett
imported>Robert Badgett
Line 21: Line 21:
:"our conclusions cannot be extrapolated to those cases in which there is a significant degree of overlying cellulitis"
:"our conclusions cannot be extrapolated to those cases in which there is a significant degree of overlying cellulitis"


There are few [[randomized controlled trial]]s to guide the decision for antibiotics.<ref name="pmid17846141">{{cite journal |author=Rajendran PM, Young D, Maurer T, ''et al'' |title=Randomized, Double-Blind, Placebo-Controlled Trial of Cephalexin for Treatment of Uncomplicated Skin Abscesses in a Population at Risk for Community-Acquired Methicillin-Resistant Staphylococcus aureus Infection |journal=Antimicrob. Agents Chemother. |volume=51 |issue=11 |pages=4044–8 |year=2007 |pmid=17846141 |doi=10.1128/AAC.00377-07}}</ref><ref name="pmid3880635">{{cite journal |author=Llera JL, Levy RC |title=Treatment of cutaneous abscess: a double-blind clinical study |journal=Annals of Emergency Medicine |volume=14 |issue=1 |pages=15–9 |year=1985 |pmid=3880635 |doi=}}</ref><ref name="pmid322789">{{cite journal |author=Macfie J, Harvey J |title=The treatment of acute superficial abscesses: a prospective clinical trial |journal=The British journal of surgery |volume=64 |issue=4 |pages=264–6 |year=1977 |pmid=322789 |doi=}}</ref><ref name="pmid13608051">{{cite journal |author=Anderson J |title=Dispensability of post-operative penicillin in septic-hand surgery |journal=Br Med J |volume=2 |issue=5112 |pages=1569–71 |year=1958 |month=December |pmid=13608051 |pmc=2028058 |doi= |url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=citizendium&pubmedid=13608051 |issn=}}</ref><ref name="pmid13446439">{{cite journal |author=Burn JI, Curwen MP, Huntsman RG, Shooter RA |title=A trial of penicillin V; response of penicillin-resistant staphylococcal infections to penicillin |journal=Br Med J |volume=2 |issue=5038 |pages=193–6 |year=1957 |month=July |pmid=13446439 |pmc=1961881 |doi= |url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=citizendium&pubmedid=13446439 |issn=}}</ref> In the most recent trial, although in this trial  87.8% os isolated were methicillin-resistant [[staphylococcus aureus]] (MRSA) yet the antibiotic used was [[cephalexin]]. It is not known if an antibiotic effective against MRSA would have reducted the rate of treatment failures below the 10% failure rate observed in the trial.
There are few [[randomized controlled trial]]s to guide the decision for antibiotics.<ref name="pmid17846141">{{cite journal |author=Rajendran PM, Young D, Maurer T, ''et al'' |title=Randomized, Double-Blind, Placebo-Controlled Trial of Cephalexin for Treatment of Uncomplicated Skin Abscesses in a Population at Risk for Community-Acquired Methicillin-Resistant Staphylococcus aureus Infection |journal=Antimicrob. Agents Chemother. |volume=51 |issue=11 |pages=4044–8 |year=2007 |pmid=17846141 |doi=10.1128/AAC.00377-07}}</ref><ref name="pmid3880635">{{cite journal |author=Llera JL, Levy RC |title=Treatment of cutaneous abscess: a double-blind clinical study |journal=Annals of Emergency Medicine |volume=14 |issue=1 |pages=15–9 |year=1985 |pmid=3880635 |doi=}}</ref><ref name="pmid322789">{{cite journal |author=Macfie J, Harvey J |title=The treatment of acute superficial abscesses: a prospective clinical trial |journal=The British journal of surgery |volume=64 |issue=4 |pages=264–6 |year=1977 |pmid=322789 |doi=}}</ref><ref name="pmid4191960">{{cite journal |author=Rutherford WH, Hart D, Calderwood JW, Merrett JD |title=Antibiotics in surgical treatment of septic lesions |journal=Lancet |volume=1 |issue=7656 |pages=1077–80 |year=1970 |month=May |pmid=4191960 |doi= |url= |issn=}}</ref><ref name="pmid13608051">{{cite journal |author=Anderson J |title=Dispensability of post-operative penicillin in septic-hand surgery |journal=Br Med J |volume=2 |issue=5112 |pages=1569–71 |year=1958 |month=December |pmid=13608051 |pmc=2028058 |doi= |url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=citizendium&pubmedid=13608051 |issn=}}</ref><ref name="pmid13446439">{{cite journal |author=Burn JI, Curwen MP, Huntsman RG, Shooter RA |title=A trial of penicillin V; response of penicillin-resistant staphylococcal infections to penicillin |journal=Br Med J |volume=2 |issue=5038 |pages=193–6 |year=1957 |month=July |pmid=13446439 |pmc=1961881 |doi= |url=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=citizendium&pubmedid=13446439 |issn=}}</ref> In the most recent trial, although in this trial  87.8% of isolates were methicillin-resistant [[staphylococcus aureus]] (MRSA) yet the antibiotic used was [[cephalexin]]. It is not known if an antibiotic effective against MRSA would have reducted the rate of treatment failures below the 10% failure rate observed in the trial.
 
In a cohort analyis of a randomized controlled trial that compared cefdinir vs. cephalexin, neither of which is effective at MRSA, found that the rate of clinical cure was 92% (66/72) for patients infected by MRSA versus 91% (72/79) for patient infected by MSSA.<ref name="pmid17257456">{{cite journal |author=Giordano PA, Elston D, Akinlade BK, ''et al'' |title=Cefdinir vs. cephalexin for mild to moderate uncomplicated skin and skin structure infections in adolescents and adults |journal=Curr Med Res Opin |volume=22 |issue=12 |pages=2419–28 |year=2006 |month=December |pmid=17257456 |doi=10.1185/030079906X148355 |url=http://www.informapharmascience.com/doi/abs/10.1185/030079906X148355 |issn=}}</ref> However, only 26% of these patients had abscesses.


In observational [[cohort study|cohort studies]] of patients with MRSA produce conflicting results with one study supporting antibiotics<ref name="pmid17304447">{{cite journal |author=Ruhe JJ, Smith N, Bradsher RW, Menon A |title=Community-onset methicillin-resistant Staphylococcus aureus skin and soft-tissue infections: impact of antimicrobial therapy on outcome |journal=Clin. Infect. Dis. |volume=44 |issue=6 |pages=777–84 |year=2007 |month=March |pmid=17304447 |doi=10.1086/511872 |url=http://www.journals.uchicago.edu/doi/abs/10.1086/511872?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov |issn=}}</ref> one study not supporting<ref name="pmid16914702">{{cite journal |author=Moran GJ, Krishnadasan A, Gorwitz RJ, ''et al'' |title=Methicillin-resistant S. aureus infections among patients in the emergency department |journal=N. Engl. J. Med. |volume=355 |issue=7 |pages=666–74 |year=2006 |month=August |pmid=16914702 |doi=10.1056/NEJMoa055356 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=16914702&promo=ONFLNS19 |issn=}}</ref> and one study not supporting<ref name="pmid14872177">{{cite journal |author=Lee MC, Rios AM, Aten MF, ''et al'' |title=Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus |journal=Pediatr. Infect. Dis. J. |volume=23 |issue=2 |pages=123–7 |year=2004 |month=February |pmid=14872177 |doi=10.1097/01.inf.0000109288.06912.21 |url=http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0891-3668&volume=23&issue=2&spage=123 |issn=}}</ref> that actually reporting an insignificant tendency towards improvement with antiobiotics.
In observational [[cohort study|cohort studies]] of patients with MRSA produce conflicting results with one study supporting antibiotics<ref name="pmid17304447">{{cite journal |author=Ruhe JJ, Smith N, Bradsher RW, Menon A |title=Community-onset methicillin-resistant Staphylococcus aureus skin and soft-tissue infections: impact of antimicrobial therapy on outcome |journal=Clin. Infect. Dis. |volume=44 |issue=6 |pages=777–84 |year=2007 |month=March |pmid=17304447 |doi=10.1086/511872 |url=http://www.journals.uchicago.edu/doi/abs/10.1086/511872?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov |issn=}}</ref> one study not supporting<ref name="pmid16914702">{{cite journal |author=Moran GJ, Krishnadasan A, Gorwitz RJ, ''et al'' |title=Methicillin-resistant S. aureus infections among patients in the emergency department |journal=N. Engl. J. Med. |volume=355 |issue=7 |pages=666–74 |year=2006 |month=August |pmid=16914702 |doi=10.1056/NEJMoa055356 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=16914702&promo=ONFLNS19 |issn=}}</ref> and one study not supporting<ref name="pmid14872177">{{cite journal |author=Lee MC, Rios AM, Aten MF, ''et al'' |title=Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus |journal=Pediatr. Infect. Dis. J. |volume=23 |issue=2 |pages=123–7 |year=2004 |month=February |pmid=14872177 |doi=10.1097/01.inf.0000109288.06912.21 |url=http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0891-3668&volume=23&issue=2&spage=123 |issn=}}</ref> that actually reporting an insignificant tendency towards improvement with antiobiotics.

Revision as of 14:18, 2 January 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

An abscess is defined as an "accumulation of purulent material in tissues, organs, or circumscribed spaces, usually associated with signs of infection."[1]

Treatment of skin abscesses

Incision and drainage

The abscess should be treated with incision and drainage.[2]

Packing

Although packing of the abscess cavity is commonly done after drainage, it may delay healing.[3] To address this question, a randomized controlled trial was started in Sept. 2008 and is ongoing as of Dec. 2008.[4]

Primary closure

Primary closure has been successful when combined with curettage and antibiotics[5] or with curettage alone.[6] However, another randomized controlled trial found primary closure led to 35% failing to heal primarily and primary closure longer median number of days to closure (8.9 versus 7.8).[7]

In anorectal abscesses, primary closure healed faster, but 25% of abscesses healed by secondary healing and recurrence was higher.[8]

Antibiotics

A clinical practice guideline by the Infectious Disease Society of American concludes that "gram stain, culture, and systemic antibiotics are rarely necessary"[9]; however, according the National Guideline Clearinghouse summary of this guideline, the guideline was not a systematic review of the evidence.[10]

Antibiotics should be considered if there is significant overlying cellulitis. Systematic reviews of relevant studies concluded that:[11][12]

"the current literature does not support the routine practice of prescribing antibiotics after incision and drainage of simple cutaneous abscesses, even in high-MRSA-prevalence areas"
"our conclusions cannot be extrapolated to those cases in which there is a significant degree of overlying cellulitis"

There are few randomized controlled trials to guide the decision for antibiotics.[13][14][2][15][16][17] In the most recent trial, although in this trial 87.8% of isolates were methicillin-resistant staphylococcus aureus (MRSA) yet the antibiotic used was cephalexin. It is not known if an antibiotic effective against MRSA would have reducted the rate of treatment failures below the 10% failure rate observed in the trial.

In a cohort analyis of a randomized controlled trial that compared cefdinir vs. cephalexin, neither of which is effective at MRSA, found that the rate of clinical cure was 92% (66/72) for patients infected by MRSA versus 91% (72/79) for patient infected by MSSA.[18] However, only 26% of these patients had abscesses.

In observational cohort studies of patients with MRSA produce conflicting results with one study supporting antibiotics[19] one study not supporting[20] and one study not supporting[21] that actually reporting an insignificant tendency towards improvement with antiobiotics.

In the supporting cohort study, antibiotics improved the cure rate from 87% to 95%.[19]

One cohort study claiming antibiotics do not work found actually found a statistically insignificant trend towards improvement with all five (100%) of children treated with appropriate antibiotics improved as compared to 58 of 62 (94%) treated with ineffective antiobiotics.[21] A second nonsupporting study found there was "no significant differences" (rates not provided by the article) among patients treated with appropriate antibiotics versus those treated without appropriate antibiotics.[20]

Prevention

To prevent recurrent infections due to Staphylococcus aureus, consider the following measures:

  • Topical mupirocin applied to the nares.[22] In this randomized controlled trial, patients used nasal mupirocin twice daily 5 days a month for 1 year.[23]
  • Chlorhexidine baths,[24] in a randomized controlled trial, nasal recolonization with S. aureus occurred at 12 weeks in 24% of nursing home residents receiving mupirocin ointment alone (6/25) and in 15% of residents receiving mupirocin ointment plus chlorhexidine baths daily for the first three days of mupirocin treatment (4/27). Although these results did not reach statistical significance, the baths are easy to do.

References

  1. National Library of Medicine. Abscess. Retrieved on 2007-10-19.
  2. 2.0 2.1 Macfie J, Harvey J (1977). "The treatment of acute superficial abscesses: a prospective clinical trial". The British journal of surgery 64 (4): 264-6. PMID 322789[e] Cite error: Invalid <ref> tag; name "pmid322789" defined multiple times with different content
  3. BestBets: abscesses; to pack or not to pack.
  4. Study of Wound Packing After Superficial Skin Abscess Drainage - Full Text View - ClinicalTrials.gov.
  5. Abraham N, Doudle M, Carson P (1997). "Open versus closed surgical treatment of abscesses: a controlled clinical trial". The Australian and New Zealand journal of surgery 67 (4): 173-6. PMID 9137156[e]
  6. Stewart MP, Laing MR, Krukowski ZH (1985). "Treatment of acute abscesses by incision, curettage and primary suture without antibiotics: a controlled clinical trial". The British journal of surgery 72 (1): 66-7. PMID 3881155[e]
  7. Simms MH, Curran F, Johnson RA, et al (1982). "Treatment of acute abscesses in the casualty department". British medical journal (Clinical research ed.) 284 (6332): 1827-9. PMID 6805714[e]
  8. Kronborg O, Olsen H (1984). "Incision and drainage v. incision, curettage and suture under antibiotic cover in anorectal abscess. A randomized study with 3-year follow-up". Acta Chirurgica Scandinavica 150 (8): 689-92. PMID 6397949[e]
  9. Stevens DL, Bisno AL, Chambers HF, et al (November 2005). "Practice guidelines for the diagnosis and management of skin and soft-tissue infections". Clin. Infect. Dis. 41 (10): 1373–406. DOI:10.1086/497143. PMID 16231249. Research Blogging.
  10. Anonymous (2005). Practice guidelines for the diagnosis and management of skin and soft-tissue infections.. National Guidelines Clearinghouse.
  11. Hankin A, Everett WW (2007). "Are antibiotics necessary after incision and drainage of a cutaneous abscess?". Annals of emergency medicine 50 (1): 49-51. DOI:10.1016/j.annemergmed.2007.01.018. PMID 17577944. Research Blogging. PMID 17577944
  12. Korownyk C, Allan GM (2007). "Evidence-based approach to abscess management". Canadian family physician Médecin de famille canadien 53 (10): 1680–4. PMID 17934031[e]
  13. Rajendran PM, Young D, Maurer T, et al (2007). "Randomized, Double-Blind, Placebo-Controlled Trial of Cephalexin for Treatment of Uncomplicated Skin Abscesses in a Population at Risk for Community-Acquired Methicillin-Resistant Staphylococcus aureus Infection". Antimicrob. Agents Chemother. 51 (11): 4044–8. DOI:10.1128/AAC.00377-07. PMID 17846141. Research Blogging.
  14. Llera JL, Levy RC (1985). "Treatment of cutaneous abscess: a double-blind clinical study". Annals of Emergency Medicine 14 (1): 15–9. PMID 3880635[e]
  15. Rutherford WH, Hart D, Calderwood JW, Merrett JD (May 1970). "Antibiotics in surgical treatment of septic lesions". Lancet 1 (7656): 1077–80. PMID 4191960[e]
  16. Anderson J (December 1958). "Dispensability of post-operative penicillin in septic-hand surgery". Br Med J 2 (5112): 1569–71. PMID 13608051. PMC 2028058[e]
  17. Burn JI, Curwen MP, Huntsman RG, Shooter RA (July 1957). "A trial of penicillin V; response of penicillin-resistant staphylococcal infections to penicillin". Br Med J 2 (5038): 193–6. PMID 13446439. PMC 1961881[e]
  18. Giordano PA, Elston D, Akinlade BK, et al (December 2006). "Cefdinir vs. cephalexin for mild to moderate uncomplicated skin and skin structure infections in adolescents and adults". Curr Med Res Opin 22 (12): 2419–28. DOI:10.1185/030079906X148355. PMID 17257456. Research Blogging.
  19. 19.0 19.1 Ruhe JJ, Smith N, Bradsher RW, Menon A (March 2007). "Community-onset methicillin-resistant Staphylococcus aureus skin and soft-tissue infections: impact of antimicrobial therapy on outcome". Clin. Infect. Dis. 44 (6): 777–84. DOI:10.1086/511872. PMID 17304447. Research Blogging.
  20. 20.0 20.1 Moran GJ, Krishnadasan A, Gorwitz RJ, et al (August 2006). "Methicillin-resistant S. aureus infections among patients in the emergency department". N. Engl. J. Med. 355 (7): 666–74. DOI:10.1056/NEJMoa055356. PMID 16914702. Research Blogging.
  21. 21.0 21.1 Lee MC, Rios AM, Aten MF, et al (February 2004). "Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus". Pediatr. Infect. Dis. J. 23 (2): 123–7. DOI:10.1097/01.inf.0000109288.06912.21. PMID 14872177. Research Blogging.
  22. van Rijen M, Bonten M, Wenzel R, Kluytmans J (2008). "Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers". Cochrane Database Syst Rev (4): CD006216. DOI:10.1002/14651858.CD006216.pub2. PMID 18843708. Research Blogging.
  23. Raz R, Miron D, Colodner R, Staler Z, Samara Z, Keness Y (1996). "A 1-year trial of nasal mupirocin in the prevention of recurrent staphylococcal nasal colonization and skin infection.". Arch Intern Med 156 (10): 1109-12. PMID 8638999.
  24. Watanakunakorn C, Axelson C, Bota B, Stahl C (1995). "Mupirocin ointment with and without chlorhexidine baths in the eradication of Staphylococcus aureus nasal carriage in nursing home residents.". Am J Infect Control 23 (5): 306-9. PMID 8585642.