3j-symbol

From Citizendium
Revision as of 06:33, 5 September 2007 by imported>Paul Wormer (WP page is by my former colleague Gerrit Groenenboom)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Wigner 3-jm symbols, also called 3j symbols, are related to Clebsch-Gordan coefficients through

Inverse relation

The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution

Symmetry properties

The symmetry properties of 3j symbols are more convenient than those of Clebsch-Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns:

An odd permutation of the columns gives a phase factor:

Changing the sign of the quantum numbers also gives a phase:

Selection rules

The Wigner 3j is zero unless , is integer, and .

Scalar invariant

The contraction of the product of three rotational states with a 3j symbol,

is invariant under rotations.

Orthogonality Relations


References

  • E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Pinceton, 1960.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.