File:FilogbigT.jpg

From Citizendium
Revision as of 21:52, 7 March 2012 by imported>Dmitrii Kouznetsov ({{Image_Details|user |description = Complex map of function Filog. ==Semantics of Filog== $\mathrm{Filog}(z)$ expresses the fixed point of logarithm to base $b\!=\!\exp(z)$. Another fixed point to the same base can be expressed with $\mathrm{Filog}(z^*)^*$ ==Algorithm of evaluation== Filog is expressed through the Tania function: : $\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}$ ==Representation of the function== $f=...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Original file(4,305 × 4,276 pixels, file size: 1.53 MB, MIME type: image/jpeg)

Summary

Title / Description


Complex map of function Filog. ==Semantics of Filog== $\mathrm{Filog}(z)$ expresses the fixed point of logarithm to base $b\!=\!\exp(z)$. Another fixed point to the same base can be expressed with $\mathrm{Filog}(z^*)^*$ ==Algorithm of evaluation== Filog is expressed through the Tania function: : $\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}$ ==Representation of the function== $f=\mathrm{Filog}(x+\mathrm{i} y)$ is shown in the $x,y$ plane with levels $u=\Re(f)=\mathrm{cont}$ and levels $v=\Im(f)=\mathrm{cont}$; thick lines correspond to the integer values. The additional thin gridlines $x\!=\!\exp(-1)$ and $x\!=\!\pi/2$ are drawn. The first of them goes through the branchpoint $z=1/\mathrm e$, which is the branch point; the second goes through the point $z=\pi/2$, where the fixed points are $\pm \mathrm i$. ==Properties of the function== $\mathrm{Filog}(z)$ has two singularities at $z\!=\!0$ and at $z\!=\!\exp(-1)$; the cutline is directed to the negative part of the real axis. Except the cutline, the function is holomorphic. At the real values of the argument $0\!<\!z\!<\!\exp(-1)$, both at the upper side of the cut and at the lower side of the cut, the function has real values; in particular, at $z=\ln\big(\sqrt{2}\big)$, there values are integer [1]: : $\mathrm{Filog}(z+\mathrm i o)=2$ : $\mathrm{Filog}(z-\mathrm i o)=4$ Approaching the branchpoint, the jump at the cut vanishes:  : $ \displaystyle \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x+\mathrm i o)= \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x-\mathrm i o)= \mathrm e$ ==Generator of curves== // Files ado.cin, conto.cin and filog.cin should be loaded to the working directory for the compilation of the C++ code below: #include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "filog.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=400,M1=M+1; int N=401,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("filogbig.eps","w");ado(o,2004,2004); fprintf(o,"1002 1002 translate\n 100 100 scale\n"); DO(m,M1) X[m]=-10.+.05*(m-.2); DO(n,200)Y[n]=-10.+.05*n; Y[200]=-.0001; Y[201]= .0001; for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); for(m=-10;m<11;m++){M(m,-10)L(m,10)} for(n=-10;n<11;n++){M( -10,n)L(10,n)} fprintf(o,".005 W 0 0 0 RGB S\n"); M(exp(-1.),-1) L(exp(-1.), 1) M(M_PI/2.,-1) L(M_PI/2., 1) fprintf(o,".003 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=Tania(z_type(-1.,-M_PI)+log(z))/(-z); c=Filog(z); p=Re(c);q=Im(c); if(p>-15. && p<15. && q>-15. && q<15. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
Citizendium author
& Copyright holder


Please edit this page and add the username of the Citizen who owns this image.
Date created


Please edit this page and add the date of creation, or an estimate thereof.
Country of first publication


Please edit this page and add the country of first publication, or note that it is unknown.
Notes


You can edit this page and add notes here which may be useful to people who wish to re-use this media.
Other versions


If there are other versions of this media on CZ, please list them here.
Using this image on CZ


Please click here to add the credit line, then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.

{{Image|FilogbigT.jpg|right|350px|Add image caption here.}}

Image issue? Contact us via the email below.

Please send email to manager A T citizendium.org .

fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=3.;q=1; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".001 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".001 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".001 W 0 0 .9 RGB S\n"); for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".004 W .9 0 0 RGB S\n"); for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".004 W .6 0 .6 RGB S\n"); for(m=-11;m<14;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf filogbig.eps"); system( "open filogbig.pdf"); //for mac // getchar(); system("killall Preview"); // for mac // Copyleft 2012 by Dmitrii Kouznetsov } ==Generator of labels== For the compilation of the Latex source below, the curves of the complex map should be already generated and stored in file fIlog.pdf with the C++ code above. \documentclass[12pt]{article} %<br> \usepackage{geometry}  %<br> \paperwidth 2074pt %<br> \paperheight 2060pt %<br> \topmargin -96pt %<br> \oddsidemargin -80pt %<br> \textwidth 2090pt %<br> \textheight 2066pt %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \rme {\mathrm{e}} %<br> \newcommand \sx {\scalebox} %<br> \begin{document} %<br> \begin{picture}(2018,2040) %<br> \put(50,40){\includegraphics{filogbig}} %<br> \put(16,2024){\sx{4.3}{$y$}} %<br> \put(16,1828){\sx{4.2}{$8$}} %<br> \put(16,1628){\sx{4.2}{$6$}} %<br> \put(16,1428){\sx{4.2}{$4$}} %<br> \put(16,1228){\sx{4.2}{$2$}} %<br> \put(16,1028){\sx{4.2}{$0$}} %<br> \put(-11,828){\sx{4}{$-2$}} %<br> \put(-11,628){\sx{4}{$-4$}} %<br> \put(-11,428){\sx{4}{$-6$}} %<br> \put(-11,228){\sx{4}{$-8$}} %<br> \put(-8,0){\sx{4}{$-10$}} %<br> \put(204,0){\sx{4}{$-8$}} %<br> \put(404,0){\sx{4}{$-6$}} %<br> \put(604,0){\sx{4}{$-4$}} %<br> \put(804,0){\sx{4}{$-2$}} %<br> \put(1046,0){\sx{4}{$0$}} %<br> \put(1246,0){\sx{4}{$2$}} %<br> \put(1446,0){\sx{4}{$4$}} %<br> \put(1646,0){\sx{4}{$6$}} %<br> \put(1846,0){\sx{4}{$8$}} %<br> \put(2036,0){\sx{4.2}{$x$}} %<br> %\put(40, 2){\sx{.8}{$1/\rme$}} %<br> %\put(108, 0){\sx{1}{$1$}} %<br> %\put(164, 2){\sx{.8}{$\pi/2$}} %<br> \put(1600,1480){\sx{6}{\rot{55}$u\!=\!0$ \ero} } %<br> \put(270,1240){\sx{6}{\rot{60}$u\!=\!0.2$ \ero} } %<br> \put(800,1070){\sx{6}{\rot{55}$u\!=\!0.4$ \ero} } %<br> \put(90,910){\sx{6}{\rot{16}$u\!=\!0$ \ero} } %<br> \put(286,470){\sx{6}{\rot{70}$u\!=\!-0.2$ \ero} } %<br> \put(1686,970){\sx{6}{\rot{-30}$u\!=\!-0.2$ \ero} } %<br> \put(1686,610){\sx{6}{\rot{26}$v\!=\!0.2$ \ero} } %<br> \put(1316,210){\sx{6}{\rot{-56}$v\!=\!0$ \ero} } %<br> \put( 330,444){\sx{6}{\rot{5}$v\!=\!-0.4$ \ero} } %<br> \put( 700,10){\sx{6}{\rot{56}$v\!=\!-0.2$ \ero} } %<br> \end{picture} %<br> \end{document}  %<br> %Copyleft 2012 by Dmitrii Kouznetsov The resulting PDF file is converted to PNG with 100 pixels/inch resolution. ==Rwfwewnces==

  1. http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.

|author = Dmitrii Kouznetsov |date-created = 2012.03.08 |pub-country = Japan |notes = I tried to save it as http://en.citizendium.org/wiki/File:FilogmapT.png but it does not load as it is expected.. |versions = File:FilogmapT.png and http://tori.ils.uec.ac.jp/TORI/index.php/File:Filogbigmap100.png }}

Licensing

This media, FilogbigT.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License

You are free: To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:57, 11 March 2022Thumbnail for version as of 18:57, 11 March 20224,305 × 4,276 (1.53 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata