User:John R. Brews/Coriolis effect

From Citizendium
< User:John R. Brews
Revision as of 14:57, 18 February 2011 by imported>John R. Brews
Jump to navigation Jump to search

In psychophysical perception, the Coriolis effect is a form of orientational distress that can lead to nausea (also referred to as the Coriolis illusion).[1][2][3][4] The Coriolis effect is a concern of pilots, where it can cause extreme discomfort and disorientation.[5][6][7][8]

Vestibular system

(PD) Image: NASA
Vestibular system in the human ear.
(PD) Image: John R. Brews
When the semicircular canal stops rotating, inertia causes the cupula to register a false rotation in the opposite sense.

The vestibular system of the ear senses balance, motion, and body position. The three semicircular canals observe angular acceleration in the three planes of motion: pitch (nod yes), yaw (twist your head no), and roll (pivot head from left to right shoulder without twisting). The otolith organs, that is, the utricle and the saccule detect linear acceleration and the tilt of the head.[9]

The semicircular canals contain the endolymph, a fluid that shifts with angular acceleration, pressing unequally upon the two sides of a membrane, the cupula, when acceleration occurs, causing deflection of the cupula. The endolymph action lags the motion of the canal itself, due to its inertia. Under clockwise acceleration of the canal, the endolymph lags the canal, leading to a relative counterclockwise motion that is interpreted correctly as a clockwise acceleration.

If angular motion is held constant, a steady state is reached where the endolymph and the canal are moving at the same rate, the cupula no longer deflects, and the motion is not sensed. This situation is shown in the upper panel of the figure. If now the rotation abruptly stops, the canal stops rotating but the endolymph takes time to adapt, leading to a relative counterclockwise rotation of the endolymph. That counterclockwise relative rotation correctly indicates the acceleration, but leads to the false sensory interpretation of rotation in the opposite direction to what previously prevailed, even though actually all motion has stopped. The situation is shown in the bottom panel.

Mechanism

The mechanism behind the Coriolis effect is related to head motions that reorient the three semicircular canals while a person is rotating. If the head is vertical, and rotation is about the vertical axis, the semicircular canal in the horizontal plane registers the rotating motion. If rotation continues, a steady state is reached where the cupula is not deflected and the rotation is not sensed. If now the head is tilted (for simplicity) say by 90°, then the horizontal plane becomes vertical and this canal is no longer in rotation; its endolymph begins to slow down to match the motion of its canal. The subject then perceives this effect as counter-rotation about a horizontal axis, although actually no motion is occurring. At the same time, the semicircular canals previously in vertical planes are brought into a position where they must register the rotation, and their endolymphs accelerate. The combined effect of all three semicircular canals is to produce an apparent rotation in a direction unrelated to what is actually happening. It causes a sensation of rolling or pitching that is the Coriolis effect.[10]

Notes

  1. Jeffrey W. Vincoli (1999). Lewis' dictionary of occupational and environmental safety and health. CRC Press, p. 245. ISBN 1566703999. 
  2. Mark S Sanders & Ernest J McCormick (1993). Human Factors in Engineering and Design, 7th Edition. McGraw-Hill, p. 644. ISBN 0071128263. 
  3. Sheldon M. Ebenholtz (2001). Oculomotor Systems and Perception. Cambridge University Press. ISBN 0521804590. 
  4. George Mather (2006). Foundations of perception. Taylor & Francis. ISBN 0863778356. 
  5. Arnauld E. Nicogossian (1996). Space biology and medicine. Reston, VA: American Institute of Aeronautics and Astronautics, Inc, p. 337. ISBN 1563471809. 
  6. Thomas Brandt (2003). Vertigo: Its Multisensory Syndromes. Springer, p. 416. ISBN 0387405003. 
  7. Fred H. Previc, William R. Ercoline (2004). Spatial Disorientation in Aviation. Reston, VA: American Institute of Aeronautics and Astronautics, Inc, p. 249. ISBN 1563476541. 
  8. Gilles Clément (2003). Fundamentals of Space Medicine. Springer, p. 41. ISBN 1402015984. 
  9. An introduction to the workings of the vestibular system is found at The effects of space flight on the human vestibular system. Document EB-2002-09-011-KSC. NASA: Exploration systems mission directorate education outreach. Retrieved on 2011-02-17.
  10. Jeffrey R. Davis, Robert Johnson, Jan Stepanek (2008). Fundamentals of Aerospace Medicine, 4rth ed. Lippincott Williams & Wilkins, p. 175. ISBN 0781774667.