Revision as of 10:35, 11 May 2010 by imported>Peter Schmitt
A geometric sequence (or geometric progression) is a (finite or infinite) sequence
of (real or complex) numbers
such that the quotient (or ratio) of consecutive elements is the same for every pair.
In finance, compound interest generates a geometric sequence.
Examples
Examples for geometric sequences are
(finite, length 6: 6 elements, quotient 2)
(finite, length 4: 4 elements, quotient −2)
(infinite, quotient
)
(infinite, quotient 1)
(infinite, quotient −1)
(infinite, quotient 2)
(infinite, quotient 0) (See General form below)
Application in finance
The computation of compound interest leads to a geometric series:
When an initial amount A is deposited at an interest rate of p percent per time period
then the value An of the deposit after n time-periods is given by
![{\displaystyle A_{n}=A\left(1+{p \over 100}\right)^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/470f37934e5dbf729edff33c5a7392af360acc55)
i.e., the values
A=A0, A1, A2, A3, ...
form a geometric sequence with quotient q = 1+(p/100).
Mathematical notation
A finite sequence
![{\displaystyle a_{1},a_{2},\dots ,a_{n}=\{a_{i}\mid i=1,\dots ,n\}=\{a_{i}\}_{i=1,\dots ,n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7af989115ff1a575e297db55052e733a0c8f8f5f)
or an infinite sequence
![{\displaystyle a_{0},a_{1},a_{2},\dots =\{a_{i}\mid i\in \mathbb {N} \}=\{a_{i}\}_{i\in \mathbb {N} }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/feaf9305fb52de33fc505c537d26cfd641e7fc4e)
is called geometric sequence if
![{\displaystyle {a_{i+1} \over a_{i}}=q}](https://wikimedia.org/api/rest_v1/media/math/render/svg/858d1c5b6f687a16f766f9f784ab73d5d8babc79)
for all indices i. (The indices need not start at 0 or 1.)
General form
Thus, the elements of a geometric sequence can be written as
![{\displaystyle a_{i}=a_{1}q^{i-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/752ddf3af7edbe9cdec4451e4661e9d6eaed57e1)
Sum
The sum (of the elements) of a finite geometric sequence is
![{\displaystyle a_{1}+a_{2}+\cdots +a_{n}=\sum _{i=1}^{n}a_{i}=a_{1}(1+q+q^{2}+\cdots +q^{n-1})=a_{1}{1-q^{n} \over 1-q}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72834b7ab6b36e15b9abbac92a552cadbe2c740c)
The sum of an infinite geometric sequence is a geometric series:
![{\displaystyle \sum _{i=0}^{\infty }a_{0}q^{i}=a_{0}{1 \over 1-q}\qquad ({\textrm {for}}\ |q|<1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0f19f4ff80730cc820861714b3fbf9ac28b39e59)