In analytic geometry, a reflection is a linear operation σ on
with σ2 = 1, i.e., σ is an involution, and
σ−1 = σ. Reflecting twice an arbitrary vector brings back the original vector :
![{\displaystyle \sigma ({\vec {\mathbf {r} }}\,)={\vec {\mathbf {r} }}\,'\quad {\hbox{and}}\quad \sigma ({\vec {\mathbf {r} }}\,'\,)={\vec {\mathbf {r} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/846ff71c752de306258af43f191a0a07e853f54b)
The operation σ is orthogonal, i.e., preserves inner products, so that
![{\displaystyle \sigma ^{\mathrm {T} }=\sigma ^{-1}=\sigma .\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d525203dbd6a1d1ffc82af4a29bf5dcb0f27e98)
Reflection is orthogonal and symmetric.
PD Image Fig. 1. The vector
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1081b6f98d85b395dc1ce8d31f5c0494f8e866d6)
goes to
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec44a710cf5c21fabedbf21b5146f63bf5f9dfa)
under reflection in a plane. The unit vector
![{\displaystyle \scriptstyle {\hat {\mathbf {n} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa11b2fb8c169393d659f329e4d39aa0aabf0204)
is normal to mirror plane.
Reflection in a plane
If
is a unit vector normal (perpendicular) to a plane—the mirror plane—then
is the projection of
on this unit vector. From the figure it is evident that
![{\displaystyle {\vec {\mathbf {r} }}-{\vec {\mathbf {r} }}\,'=2({\hat {\mathbf {n} }}\cdot {\vec {\mathbf {r} }})\,{\hat {\mathbf {n} }}\;\Longrightarrow \;{\vec {\mathbf {r} }}\,'={\vec {\mathbf {r} }}-2({\hat {\mathbf {n} }}\cdot {\vec {\mathbf {r} }}){\hat {\mathbf {n} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4ca5fdd3fc20f5353b7715c8f2780ed14016c0)
If a non-unit normal
is used then substitution of
![{\displaystyle {\hat {\mathbf {n} }}={\frac {\vec {\mathbf {n} }}{|{\vec {\mathbf {n} }}|}}\equiv {\frac {\vec {\mathbf {n} }}{n}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/989c78609ff7f3d4890e1012abe93bf46749f9f9)
gives the mirror image,
![{\displaystyle {\vec {\mathbf {r} }}\,'={\vec {\mathbf {r} }}-2{\frac {({\vec {\mathbf {n} }}\cdot {\vec {\mathbf {r} }}){\vec {\mathbf {n} }}}{n^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fdbfb5e3177f2f114124205f24f6c55653875e71)
This relation can be immediately generalized to m-dimensional inner product spaces. Let the space Vm allow an orthogonal direct sum decomposition into a 1-dimensional and a (m−1)-dimensional subspace,
![{\displaystyle V_{m}=V_{1}\oplus V_{m-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/671ee88a0e0d89440f7033c6ea57423ac3e28b2f)
and let v be an element of the one-dimensional space V1 then the involution
![{\displaystyle r\mapsto r-2v{\frac {(v,r)}{(v,v)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9087b2807f0ad94b71bffb9da75d670d1cddf2f7)
is a reflection of r in the hyperplane Vm−1. (By definition a hyperplane is an m−1-dimensional linear subspace of a linear space of dimension m.) The inner product of two vectors v and w is notated as (v, w), which is common for vector spaces of arbitrary dimension.
PD Image Fig. 2. The vector
![{\displaystyle {\vec {\mathbf {s} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3726dd15e74f581d5f871adb0eb83301de42080a)
goes to
![{\displaystyle {\vec {\mathbf {s} }}\,'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/737602cd24f139d08097fb32eea77ff8ad6efaca)
under reflection
Reflection in plane not through origin
In Figure 2 a plane, not containing the origin O, is considered that is orthogonal to the vector
. The length of this vector is the distance from O to the plane.
From Figure 2, we find
![{\displaystyle {\vec {\mathbf {r} }}={\vec {\mathbf {s} }}-{\vec {\mathbf {t} }},\quad {\vec {\mathbf {r} }}\,'={\vec {\mathbf {s} }}\,'-{\vec {\mathbf {t} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da273dd41aa59c628c87703f93d6ee3df00ee277)
Use of the equation derived earlier gives
![{\displaystyle {\vec {\mathbf {s} }}\,'-{\vec {\mathbf {t} }}={\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}-2{\big (}{\hat {\mathbf {n} }}\cdot ({\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}){\big )}{\hat {\mathbf {n} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f760c39de5c2bf99f12559bd583e0e711991b16d)
And hence the equation for the reflected pair of vectors is,
![{\displaystyle {\vec {\mathbf {s} }}\,'={\vec {\mathbf {s} }}-2{\big (}{\hat {\mathbf {n} }}\cdot ({\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}){\big )}{\hat {\mathbf {n} }},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bbdc749323035f421067d63898abdda986f8c4ed)
where
is a unit normal to the plane. Obviously
and
are proportional, differ by a scaling.
Two consecutive reflections
PD Image Fig. 3. Two reflections. Left drawing: 3-dimensional drawing. Right drawing: view along the PQ axis, drawing projected on the plane through ABC. This plane intersect the line PQ in the point P′
Two consecutive reflections in two intersecting planes give a rotation around the line of intersection. This is shown in Figure 2, where PQ is the line of intersection.
The drawing on the left shows that reflection of point A in the plane through PMQ brings the point A to B. A consecutive reflection in the plane through PNQ brings B to the final position C. In the right-hand drawing it is shown that the rotation angle φ is equal to twice the angle between the mirror planes. Indeed, the angle ∠ AP'M = ∠ MP'B = α and ∠ BP'N = ∠ NP'C = β. The rotation angle ∠ AP'C ≡ φ = 2α + 2β and the angle between the planes is α+β = φ/2.
From the point of view of matrices this result follows easily also. A reflection is represented by an improper matrix, that is, by an orthogonal matrix with determinant −1. The product of two orthogonal matrices is again an orthogonal matrix and the rule for determinants is det(AB) = det(A)det(B), so that the product of two improper rotation matrices is an orthogonal matrix with unit determinant, i.e., the matrix of a proper rotation.