Rotations in ![{\displaystyle \mathbb {R} ^{3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5)
Consider a real 3×3 matrix R with columns
r1, r2, r3,
i.e.,
.
The matrix R is orthogonal if
![{\displaystyle \mathbf {r} _{i}\cdot \mathbf {r} _{j}=\delta _{ij},\quad i,j=1,2,3.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd9b3a9d504d9beb5a628de86f3eb1f086bec9fd)
The matrix R is a proper rotation matrix, if it is
orthogonal and if r1, r2,
r3 form a right-handed set, i.e.,
![{\displaystyle \mathbf {r} _{i}\times \mathbf {r} _{j}=\sum _{k=1}^{3}\,\varepsilon _{ijk}\mathbf {r} _{k}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed8037e79c016751321bbc326cc386b330a87c8e)
Here the symbol × indicates a
cross product and
is the
antisymmetric Levi-Civita symbol,
![{\displaystyle {\begin{aligned}\varepsilon _{123}=&\;\varepsilon _{312}=\varepsilon _{231}=1\\\varepsilon _{213}=&\;\varepsilon _{321}=\varepsilon _{132}=-1\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e38140913ca07c8eca665c15d2ebf73f6cd936de)
and
if two or more indices are equal.
The matrix R is an improper rotation matrix if
its column vectors form a left-handed set, i.e.,
![{\displaystyle \mathbf {r} _{i}\times \mathbf {r} _{j}=-\sum _{k}\,\varepsilon _{ijk}\mathbf {r} _{k}\;.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4972da538f1aadd48481a32aa920c812149057e8)
The last two equations can be condensed into one equation
![{\displaystyle \mathbf {r} _{i}\times \mathbf {r} _{j}=\det(\mathbf {R} )\sum _{k=1}^{3}\;\varepsilon _{ijk}\mathbf {r} _{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cec3ffdd7024157f582ee90118aab26dd6ab61d9)
by virtue of the the fact that
the determinant of a proper rotation matrix is 1 and of an improper
rotation −1. This can be proved as follows:
The determinant of a 3×3 matrix with column vectors a,
b, and c can be written as
.
Remember that for a proper rotation
the columns of R are orthonormal and satisfy,
![{\displaystyle \mathbf {r} _{1}\cdot (\mathbf {r} _{2}\times \mathbf {r} _{3})=\sum _{k}\,\varepsilon _{23k}\,\mathbf {r} _{1}\cdot \mathbf {r} _{k}=\varepsilon _{231}=1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b811038bde113fed9971da0a2a29fd3be07f7c7)
Likewise the determinant is −1 for an improper rotation, which ends the
proof.
Theorem
A proper rotation matrix R can be
factorized thus
![{\displaystyle \mathbf {R} =\mathbf {R} _{z}(\omega _{3})\;\mathbf {R} _{y}(\omega _{2})\;\mathbf {R} _{x}(\omega _{1})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b18f82799a499e947fe982dbe558efbb476c8ee)
which is referred to as the z-y-x parametrization,
or also as
![{\displaystyle \mathbf {R} =\mathbf {R} _{z}(\alpha )\;\mathbf {R} _{y}(\beta )\;\mathbf {R} _{z}(\gamma )\quad }](https://wikimedia.org/api/rest_v1/media/math/render/svg/59e7be20b761fad83ca246ef75a1d58a2ed36cbf)
the z-y-z Euler parametrization.
Here
![{\displaystyle \mathbf {R} _{z}(\varphi )\equiv {\begin{pmatrix}\cos \varphi &-\sin \varphi &0\\\sin \varphi &\cos \varphi &0\\0&0&1\\\end{pmatrix}},\quad \mathbf {R} _{y}(\varphi )\equiv {\begin{pmatrix}\cos \varphi &0&\sin \varphi \\0&1&0\\-\sin \varphi &0&\cos \varphi \\\end{pmatrix}},\quad \mathbf {R} _{x}(\varphi )\equiv {\begin{pmatrix}1&0&0\\0&\cos \varphi &-\sin \varphi \\0&\sin \varphi &\cos \varphi \\\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ceec361f7dfeae3dc1e9d34c354f39931b85e65)
Proof
First the z-y-x-parametrization will be proved by describing an
algorithm for the factorization of R.
Consider to that end
![{\displaystyle \mathbf {R} _{z}(\omega _{3})\,\mathbf {R} _{y}(\omega _{2})={\begin{pmatrix}\cos \omega _{3}\cos \omega _{2}&-\sin \omega _{3}&\cos \omega _{3}\sin \omega _{2}\\\sin \omega _{3}\cos \omega _{2}&\cos \omega _{3}&\sin \omega _{3}\sin \omega _{2}\\-\sin \omega _{2}&0&\cos \omega _{2}\\\end{pmatrix}}\equiv (\mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d065baeffb5b88422803ce42e745b12125cc9d)
Note that the multiplication by
Rx(ω1) on the right
does not affect the first column, so that r1 =
a1.
Solve
and
from the first column of
R,
![{\displaystyle \mathbf {r} _{1}={\begin{pmatrix}\cos \omega _{3}\;\cos \omega _{2}\\\sin \omega _{3}\;\cos \omega _{2}\\-\sin \omega _{2}\\\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e855b198fe4e3edf81c97cbba78796c27bd1542)
This is possible. First solve
for
from
![{\displaystyle \sin \omega _{2}=-R_{31}\equiv -(\mathbf {r} _{1})_{3}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc5c32a2a5bd53a2662044e8dd66f986c113ddb)
Then solve
for
from
![{\displaystyle {\begin{aligned}\cos \omega _{3}=&{R_{11} \over \cos \omega _{2}}\\\sin \omega _{3}=&{R_{21} \over \cos \omega _{2}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/175cd8a9b037057e31f8af68241445c1d899b74c)
This determines the vectors a2 and
a3.
Since a1, a2 and
a3 are the columns of a
proper rotation matrix they form an orthonormal
right-handed
system. The plane spanned by a2 and
a3 is orthogonal to
and hence contains
and
. Thus,
![{\displaystyle (\mathbf {r} _{2},\mathbf {r} _{3})=(\mathbf {a} _{2},\mathbf {a} _{3}){\begin{pmatrix}\cos \omega _{1}&-\sin \omega _{1}\\\sin \omega _{1}&\cos \omega _{1}\\\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e678b2792cc993fe4f47e4e79ba934cbaeac4c13)
Since
are
known unit vectors we can compute
![{\displaystyle {\begin{aligned}\mathbf {a} _{2}\cdot \mathbf {r} _{2}=&\cos \omega _{1}\\\mathbf {a} _{3}\cdot \mathbf {r} _{2}=&\sin \omega _{1}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4210d2e80526fac9a6b1313b4128d71a878e604)
These equations give
with
.
Augment the matrix to
, then
![{\displaystyle {\begin{aligned}\mathbf {R} \equiv &(\mathbf {r} _{1},\mathbf {r} _{2},\mathbf {r} _{3})=(\mathbf {r} _{1},\mathbf {a} _{2},\mathbf {a} _{3})\mathbf {R} _{x}(\omega _{1})\\=&(\mathbf {a} _{1},\mathbf {a} _{2},\mathbf {a} _{3})\mathbf {R} _{x}(\omega _{1})=\mathbf {R} _{z}(\omega _{3})\,\mathbf {R} _{y}(\omega _{2})\,\mathbf {R} _{x}(\omega _{1}).\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa1e5db31cb2d63bc667fad0102685524ebc1099)
This concludes the proof of the z-y-x parametrization.