Revision as of 12:01, 11 June 2009 by imported>Caesar Schinas
CC Image Parallelepiped spanned by vectors
A,
B, and
C (shown in red).
In analytic geometry, a triple product is a common term for a product of three vectors A, B, and C leading to a scalar (a number). The absolute value of this scalar is the volume V of the parallelepiped spanned by the three vectors:
![{\displaystyle V={\big |}\mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} ){\big |},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb165408bd03351ca46d8285ebda4427786d5f82)
where B × C is the cross product of two vectors (resulting into a vector) and the dot indicates the inner product between two vectors (a scalar).
The triple product is sometimes called the scalar triple product to distinguish it from the vector triple product A×(B×C). The scalar triple product is often written as [A B C]. The vector triple product can be expanded by the aid of the baccab formula.
Explanation
Let n be a unit normal to the parallelogram spanned by B and C (see figure). Let h be the height of the terminal point of the vector A above the base of the parallelepiped. Recall:
- Volume V of parallelepiped is height h times area S of the base.
Note that h is the projection of A on n and that the area S is the length of the cross product of the vectors spanning the base,
![{\displaystyle h=\mathbf {A} \cdot \mathbf {n} \quad {\hbox{and}}\quad S=|\mathbf {B} \times \mathbf {C} |.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7d3d9a161dad6a2492de432ff92bfedd95c6a1)
Use
![{\displaystyle V=(\mathbf {A} \cdot \mathbf {n} )\;(|\mathbf {B} \times \mathbf {C} |)=\mathbf {A} \cdot (\mathbf {n} \,|\mathbf {B} \times \mathbf {C} |)=\mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c820e0a23f0d345efa86502544cf06e29e36ced1)
where it is used that
![{\displaystyle \mathbf {n} \;|\mathbf {B} \times \mathbf {C} |=\mathbf {B} \times \mathbf {C} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9c440f07ba3d30c392703f2a9b5ce65ab982b3)
(The unit normal n has the direction of the cross product B × C).
If A, B, and C do not form a right-handed system, A•n < 0 and we must take the absolute value: | A• (B×C)|.
Triple product as determinant
Take three orthogonal unit vectors i , j, and k and write
![{\displaystyle \mathbf {A} =A_{1}\mathbf {i} +A_{2}\mathbf {j} +A_{3}\mathbf {k} ,\quad \mathbf {B} =B_{1}\mathbf {i} +B_{2}\mathbf {j} +B_{3}\mathbf {k} ,\quad \mathbf {C} =C_{1}\mathbf {i} +C_{2}\mathbf {j} +C_{3}\mathbf {k} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2be2f7ace323e80c159217a7b71d8130a8b6ebac)
The triple product is equal to a 3 × 3 determinant
![{\displaystyle \mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} )={\begin{vmatrix}A_{1}&A_{2}&A_{3}\\B_{1}&B_{2}&B_{3}\\C_{1}&C_{2}&C_{3}\\\end{vmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb28fe03813c5e6e8c798ba5d4bd67d2ae2cac9)
Indeed, writing the cross product as a determinant we find
![{\displaystyle {\begin{aligned}\mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} )&=\mathbf {A} \cdot {\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\B_{1}&B_{2}&B_{3}\\C_{1}&C_{2}&C_{3}\\\end{vmatrix}}\\&={\big (}A_{1}\mathbf {i} +A_{2}\mathbf {j} +A_{3}\mathbf {k} {\big )}\cdot {\big [}(B_{2}\,C_{3}-B_{3}\,C_{2})\;\mathbf {i} +(B_{3}\,C_{1}-B_{1}\,C_{3})\;\mathbf {j} +(B_{1}\,C_{2}-B_{2}\,C_{1})\;\mathbf {k} {\big ]}\\&=A_{1}\;(B_{2}\,C_{3}-B_{3}\,C_{2})+A_{2}\;(B_{3}\,C_{1}-B_{1}\,C_{3})+A_{3}\;(B_{1}\,C_{2}-B_{2}\,C_{1})\\&={\begin{vmatrix}A_{1}&A_{2}&A_{3}\\B_{1}&B_{2}&B_{3}\\C_{1}&C_{2}&C_{3}\\\end{vmatrix}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59d7af0616ddf13297024357fc90e030e39b4534)
Since a determinant is invariant under cyclic permutation of its rows, it follows
![{\displaystyle \mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} )=\mathbf {B} \cdot (\mathbf {C} \times \mathbf {A} )=\mathbf {C} \cdot (\mathbf {A} \times \mathbf {B} ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8b062062cb14bda0b4ebf307d6caa0ee187183)
Reference
M. R. Spiegel, Theory and Problems of Vector Analysis, Schaum Publishing, New York (1959) p. 26