Revision as of 16:33, 17 December 2008 by imported>Richard Pinch
In algebra, the resultant of two polynomials is a quantity which determines whether or not they have a factor in common.
Given polynomials
![{\displaystyle f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1646bd4d834f98a272fa606a9319b3dd9f9ae59c)
and
![{\displaystyle g(x)=b_{m}x^{m}+b_{m-1}x^{m-1}+\cdots +b_{1}x+b_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c1cabe758b79ff6472df88eba589bb231d89c9)
with roots
![{\displaystyle \alpha _{1},\ldots ,\alpha _{n}{\mbox{ and }}\beta _{1},\ldots ,\beta _{m}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ed1939dc1f3134006d4422069d4ab5dcac37984)
respectively, the resultant R(f,g) with respect to the variable x is defined as
![{\displaystyle R(f,g)=a_{n}^{m}b_{m}^{n}\prod _{i=1}^{n}\prod _{j=1}^{m}(\alpha _{i}-\beta _{j}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f6a3c8f8f91d4b48caa813c7c97d9e041f7b2205)
The resultant is thus zero if and only if f and g have a common root.
Sylvester matrix
The Sylvester matrix attached to f and g is the square (m+n)×(m+n) matrix
![{\displaystyle {\begin{pmatrix}a_{n}&a_{n-1}&\ldots &a_{0}&0&\ldots &0\\0&a_{n}&\ldots &a_{1}&a_{0}&\ldots &0\\\vdots &\vdots &\ddots &\vdots &\vdots &\ddots &a_{0}\\b_{n}&b_{n-1}&\ldots &b_{0}&0&\ldots &0\\0&b_{n}&\ldots &b_{1}&b_{0}&\ldots &0\\\vdots &\vdots &\ddots &\vdots &\vdots &\ddots &b_{0}\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ef8df2e9083f962158e0244c67166d22222f5a0e)
in which the coefficients of f occupy m rows and those of g occupy n rows.
The determinant of the Sylvester matrix is the resultant of f and g.
The rows of the Sylvester matrix may be interpreted as the coefficients of the polynomials
![{\displaystyle X^{0}f,X^{1}f,\ldots ,X^{m-1}f,X^{0}g,X^{1}g,\ldots ,X^{n-1}g\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab126d35e092491173d7ee6d0e0f3fca3f9ceeb)
and expanding the determinant we see that
![{\displaystyle R(f,g)=a(X)f(X)+b(X)g(X)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c4c0f6f769b453987d7008b548d73147d460745c)
with a and b polynomials of degree at most m-1 and n-1 respectively, and R a scalar. If f and g have a polynomial common factor this must divide R and so R must be zero. Conversely if R is zero, then f/g = - b/a so f/g is not in lowest terms and f and g have a common factor.
References