Idempotence

From Citizendium
Revision as of 12:52, 23 December 2008 by imported>Howard C. Berkowitz
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics idempotence is the property of an operation that repeated application has no further effect.

A binary operation is idempotent if

for all x:

equivalently, every element is an idempotent element for .

Examples of idempotent binary operations include join and meet in a lattice; union and intersection on sets; disjunction and conjunction in propositional logic.

A unary operation (function from a set to itself) π is idempotent if it is an idempotent element for function composition, π2 = π.