Revision as of 03:09, 28 June 2008 by imported>Paul Wormer
In vectoranalysis, the Helmholtz decomposition of a vector field on
is the writing of the vector field as a sum of two vector fields, one a divergence-free field and one a curl-free field. The decomposition is called after the German physicist Hermann von Helmholtz (1821 – 1894).
As a corollary follows that, in order to define a vector function on
uniquely, we must specify both its divergence and its curl at all points of space.
Mathematical formulation
A vector field F(r) with
can be written as follows:
![{\displaystyle \mathbf {F} (\mathbf {r} )=\mathbf {F} _{\perp }(\mathbf {r} )+\mathbf {F} _{\parallel }(\mathbf {r} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67592229d614bac79a1016f02e789a9f3d75fd50)
where
![{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {F} _{\perp }(\mathbf {r} )=0,\qquad {\boldsymbol {\nabla }}\times \mathbf {F} _{\parallel }(\mathbf {r} )=\mathbf {0} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/488d85c7d5b2a85abf274fdcc7569802f06e4e9a)
Thus, the arbitrary field F(r) can be decomposed in a part that is divergence-free,
, and a part that is curl-free,
.
Proof of decomposition
The decomposition is formulated in r-space. By a Fourier transformation the decomposition may be formulated in k-space. This is advantageous because differentiations in r-space become multiplications in k-space. We will show that divergence in r-space becomes an inner product in k-space and a curl becomes a cross product. Thus, we define the mutually inverse Fourier transforms,
![{\displaystyle {\begin{aligned}{\tilde {\mathbf {F} }}(\mathbf {k} )&={\frac {1}{(2\pi )^{3/2}}}\int e^{-i\mathbf {k} \cdot \mathbf {r} }\,\mathbf {F} (\mathbf {r} )\,d^{3}\mathbf {r} \\\mathbf {F} (\mathbf {r} )&={\frac {1}{(2\pi )^{3/2}}}\int e^{i\mathbf {k} \cdot \mathbf {r} }\,{\tilde {\mathbf {F} }}(\mathbf {k} )\,d^{3}\mathbf {r} \\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8e8cceb2df703e7c200024c858af5df3df85ca8)
An arbitrary vector field in k-space can be decomposed in components parallel and perpendicular to k,
![{\displaystyle {\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} )\equiv {\hat {\mathbf {k} }}{\big (}{\hat {\mathbf {k} }}\cdot {\tilde {\mathbf {F} }}(\mathbf {k} ){\big )},\qquad {\hbox{with}}\qquad {\hat {\mathbf {k} }}\equiv {\frac {\mathbf {k} }{|\mathbf {k} |}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/871cc09c3a88d5c36bfe80abd9e15b037c2f112d)
![{\displaystyle {\tilde {\mathbf {F} }}_{\perp }(\mathbf {k} )\equiv {\tilde {\mathbf {F} }}(\mathbf {k} )-{\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e85d87fd875887dea7b2cc4f59bb07fdee429bac)
so that
![{\displaystyle {\tilde {\mathbf {F} }}(\mathbf {k} )={\tilde {\mathbf {F} }}_{\perp }(\mathbf {k} )+{\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eae459c53b43faf335987ec9dff9cd07b384170a)
Clearly,
![{\displaystyle \mathbf {k} \cdot {\tilde {\mathbf {F} }}_{\perp }(\mathbf {k} )=0\qquad {\hbox{and}}\qquad \mathbf {k} \times {\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} )=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d00b6bd191696d05dd32f0791bfe2244b8518561)
Transforming back,
![{\displaystyle \mathbf {F} _{\perp }(\mathbf {r} )\equiv {\frac {1}{(2\pi )^{3/2}}}\int e^{i\mathbf {k} \cdot \mathbf {r} }\,{\tilde {\mathbf {F} }}_{\perp }(\mathbf {k} )\,d^{3}\mathbf {k} ,\qquad \mathbf {F} _{\parallel }(\mathbf {r} )\equiv {\frac {1}{(2\pi )^{3/2}}}\int e^{i\mathbf {k} \cdot \mathbf {r} }\,{\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} )\,d^{3}\mathbf {k} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0f01434cc9cdb8823889919b119c05ab2efb2dca)
which satisfy the properties
![{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {F} _{\perp }(\mathbf {r} )&={\frac {1}{(2\pi )^{3/2}}}\int e^{i\mathbf {k} \cdot \mathbf {r} }\,\mathbf {k} \cdot {\tilde {\mathbf {F} }}_{\perp }(\mathbf {k} )\,d^{3}\mathbf {k} =0\\{\boldsymbol {\nabla }}\times \mathbf {F} _{\parallel }(\mathbf {r} )&={\frac {1}{(2\pi )^{3/2}}}\int e^{i\mathbf {k} \cdot \mathbf {r} }\,\mathbf {k} \times {\tilde {\mathbf {F} }}_{\parallel }(\mathbf {k} )\,d^{3}\mathbf {k} =0.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a03e866b696ba7bd7be13bb0ab85857d53a6978e)
Hence we have found the required decomposition.
Proof of Corollary
(To be continued)