Revision as of 06:16, 23 January 2008 by imported>Paul Wormer
Two dimensional polar coordinates
r and θ of vector
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1081b6f98d85b395dc1ce8d31f5c0494f8e866d6)
In mathematics and physics, polar coordinates give the position of a vector
in two-dimensional real space
. A Cartesian system of two orthogonal axes is presupposed. One number (r) gives the length of the vector and the other number (θ) gives the angle of the vector with the x-axis of the Cartesian system (measured in the direction of the positive y-axis, i.e., counter-clockwise).
Definition
The polar coordinates are related to the Cartesian coordinates x and y through
![{\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\x&=r\cos \theta \\y&=r\sin \theta ,\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3053da10ff1c81b1f12326f55e3d4f06c04c4b0a)
so that for r ≠ 0,
![{\displaystyle \theta ={\begin{cases}\arccos(x/r)&{\hbox{ if }}y\geq 0\\360^{0}-\arccos(x/r)&{\hbox{ if }}y<0.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1306b16a40e0fa397f9a16b42eb4e8fc41b2071e)
Surface element
The infinitesimal surface element in polar coordinates is
![{\displaystyle dA=J\,dr\,d\theta .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3817eb830926b7786dcf8889ae72477155b36cef)
The Jacobian J is the determinant
![{\displaystyle J={\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \\\end{vmatrix}}=r.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f0de3e44dc69790e9fe713e21611e0137e031b4b)
Example: the area A of a circle of radius R is given by
![{\displaystyle A=\int _{0}^{2\pi }\int _{0}^{R}r\,dr\,d\theta =\pi R^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5f929a7d719507752e1bc0911862d7003cdae1e)