Revision as of 03:55, 26 December 2007 by imported>Joe Quick
In mathematics, multi-index is an n-tuple of non-negative integers. Multi-indices are widely used in multivariable analysis to denote e.g. partial derivatives and multidimensional power function. Many formulas known from the one dimension one (i.e. the real line) carry on to
by simple replacing usual indices with multi-indices.
Formally, multi-index
is defined as
, where ![{\displaystyle \alpha _{i}\in \mathbb {N} \cup \{0\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7224ba19a95ed6b4cda5b625e671233e361828b9)
Basic definitions and notational conventions using multi-indices.
- The order or length of
![{\displaystyle \alpha }](https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3)
![{\displaystyle |\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7832f93f42cce41671070ecf5a4135255fb4c93a)
- Factorial of a multi-index
![{\displaystyle \alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c5ec408016ade71f03fa953438c6e9560a32a05)
- multidimensional power notation
- If
and
is a multi-index then
is defined as
![{\displaystyle x^{\alpha }=(x_{1}^{\alpha _{1}},x_{2}^{\alpha _{2}},\ldots ,x_{n}^{\alpha _{n}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29b5b151f8169117501c0c399d30a815e3de6f67)
- The following notation is used for partial derivatives of a function
![{\displaystyle f:\mathbb {R} ^{n}\mapsto \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/f25f13abe9d5954de37adaaad7560aac112fbc43)
![{\displaystyle D^{\alpha }f={\frac {\partial ^{|\alpha |}f}{\partial x_{1}^{\alpha _{1}}\partial x_{2}^{\alpha _{2}}\cdots \partial x_{n}^{\alpha _{n}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ceee77dd3a1cb940efe5edef9c51b21f0b7a9a08)
- Remark: sometimes the symbol
instead of
is used.