Revision as of 05:33, 5 September 2007 by imported>Paul Wormer
Wigner 3-jm symbols, also called 3j symbols,
are related to Clebsch-Gordan coefficients
through
![{\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\equiv {\frac {(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt {2j_{3}+1}}}\langle j_{1}m_{1}j_{2}m_{2}|j_{3}\,{-m_{3}}\rangle .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51eec4610293bc18ac98f2ef4a7b24ad29970adf)
Inverse relation
The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution
![{\displaystyle \langle j_{1}m_{1}j_{2}m_{2}|j_{3}m_{3}\rangle =(-1)^{j_{1}-j_{2}+m_{3}}{\sqrt {2j_{3}+1}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&-m_{3}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8cf775417fb295c078c603cd8157221086b95bf7)
Symmetry properties
The symmetry properties of 3j symbols are more convenient than those of
Clebsch-Gordan coefficients. A 3j symbol is invariant under an even
permutation of its columns:
![{\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{2}&j_{3}&j_{1}\\m_{2}&m_{3}&m_{1}\end{pmatrix}}={\begin{pmatrix}j_{3}&j_{1}&j_{2}\\m_{3}&m_{1}&m_{2}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66272830f76fd77b50b76b3b0be765b9bb90b75c)
An odd permutation of the columns gives a phase factor:
![{\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{2}&j_{1}&j_{3}\\m_{2}&m_{1}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{3}&j_{2}\\m_{1}&m_{3}&m_{2}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/783d1bd3a55dd8401a76f9c345f5db5493b037c6)
Changing the sign of the
quantum numbers also gives a phase:
![{\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-m_{1}&-m_{2}&-m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b94f388c7d4d9c46942bdb5eed197bdfec1a5d22)
Selection rules
The Wigner 3j is zero unless
,
is integer,
and
.
Scalar invariant
The contraction of the product of three rotational states with a 3j symbol,
![{\displaystyle \sum _{m_{1}=-j_{1}}^{j_{1}}\sum _{m_{2}=-j_{2}}^{j_{2}}\sum _{m_{3}=-j_{3}}^{j_{3}}|j_{1}m_{1}\rangle |j_{2}m_{2}\rangle |j_{3}m_{3}\rangle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f5692f1a06ff12601a0595253248f734df0c276)
is invariant under rotations.
Orthogonality Relations
References
- E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
- A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Pinceton, 1960.
- D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
- L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
- D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.