Revision as of 06:50, 22 August 2007 by imported>Paul Wormer
In mathematics and physics, an associated Legendre function Pl(m) is related to a Legendre polynomial Pl by the following equation
![{\displaystyle P_{\ell }^{(m)}(x)=(1-x^{2})^{m/2}{\frac {dP_{\ell }(x)}{dx^{\ell }}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d944e7d7af5a3d90bdb7ae38a65677999c748e98)
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.
The associated Legendre polynomials are important in quantum mechanics and potential theory.
Differential equation
Define
![{\displaystyle \Pi _{\ell }^{(m)}(x)\equiv {\frac {d^{m}P_{\ell }(x)}{dx^{m}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00b91d322534ed8ca77218f13b2485a9d32c9ca2)
where Pl(x) is a Legendre polynomial.
Differentiating the Legendre differential equation:
![{\displaystyle (1-x^{2}){\frac {d^{2}\Pi _{\ell }^{(0)}(x)}{dx^{2}}}-2x{\frac {d\Pi _{\ell }^{(0)}(x)}{dx}}+\ell (\ell +1)\Pi _{\ell }^{(0)}(x)=0,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2eaa2f801f1a4b30cfc8a580e021ea57adb49642)
m times gives an equation for Π(m)l
![{\displaystyle (1-x^{2}){\frac {d^{2}\Pi _{\ell }^{(m)}(x)}{dx^{2}}}-2(m+1)x{\frac {d\Pi _{\ell }^{(m)}(x)}{dx}}+\left[\ell (\ell +1)-m(m+1)\right]\Pi _{\ell }^{(m)}(x)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f55acd236ce3001a02eb1f8137d2cadc3da528d7)
SAfter substitutition of
![{\displaystyle \Pi _{\ell }^{(m)}(x)=(1-x^{2})^{-m/2}P_{\ell }^{(m)}(x),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2860f108779001acae3bd1c5eaddc36a46ba9078)
we find, after multiplying through with
, that the associated Legendre differential equation holds for the associated Legendre functions
![{\displaystyle (1-x^{2}){\frac {d^{2}P_{\ell }^{(m)}(x)}{dx^{2}}}-2x{\frac {dP_{\ell }^{(m)}(x)}{dx}}+\left[\ell (\ell +1)-{\frac {m^{2}}{1-x^{2}}}\right]P_{\ell }^{(m)}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df1caa81681ff0254662e2b4ba39f87b838c1965)
In physical applications usually x = cosθ, then then associated Legendre differential equation takes the form
![{\displaystyle {\frac {1}{\sin \theta }}{\frac {d}{d\theta }}\sin \theta {\frac {d}{d\theta }}P_{\ell }^{(m)}+\left[\ell (\ell +1)-{\frac {m^{2}}{\sin ^{2}\theta }}\right]P_{\ell }^{(m)}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f60c562807c12f8b7169bbf14d828dd84cb252e)