CZ:Cold Storage/Conceptual integration technique

From Citizendium
< CZ:Cold Storage
Revision as of 03:55, 6 August 2007 by imported>Kris Roose (making first part a separate article: Plausible Science)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


The integrative procedure

1. Introduction

Deduction and induction. The process of integration, leading to the formulation of a new, more plausible hypothesis, is part of the indcution process, which is still unconscious and inaccessible for conscious reasoning. All the Principles of Logic, from Socrates to Descartes and Leibniz, in fact are Principles of Deductive Logic. An Inductive Logic is still to be elaborated. This integrative process can be seen as the kernel of such a paradigm.

In the next scheme the process of thinking is depicted. In intelligent beings, Reality is, at least in part, observed, and out from these observations some general tendencies are abstracted. These are the hyotheses, the knowledge, general rules and laws. The hypothesis formulation process is called induction. From these abstract hypotheses, conclusions can be drawn by logical, deductive thinking. Generally this operation consists in replacing abstract data by concrete numbers, and performing some mathematical transformations. Science is a collection of conscious rules, i.e. operationalized and measurable. Also in exact science, the elaboration of a scientific hypothesis is an intuitive process. In fact, science only controls the "exactness" of the intuitively formulated hypotheses.

In many cases, the hypothesis itself remains hidden in the realm of the unconscious, and is then called intuition. In this case also the deductive process is largely unconscious and intuitive, e.g. art, musical improvisation.

The integration process is the elaboration of a new, more general hypothesis out of some particular hypotheses with limited applicability.

Because it is still largely unconscious, this process can not ye be described in detail, not yet operationalized, and not yet programmed for a computer. All computers are still deductive up to now, although when the possibilities are limited, a pseudo-inductive routine can be elaborated, like in computer chess programs: a mathematical calculation of all possible reactions is made, and a quick statistical evaluation is made of the outcome of each possibility, and then a mathematically guided choice is automatically made.

But although we can't yet describe the process in detail, we can identify several subphases, making the theoretical challenge more realistic, and perhaps coming closer to the long expected discovery of an Inductive Logic. We also will offer some auxiliary tools to enhance this subconscious integrative process.

2. Eduction (v)

Let's consider two statements, A en B. They seem irreconcilable:

   A <> B

But let's suppose that, most probably, both observers were sufficiently intelligent not to be completely wrong, and were observing different situations: different factors elicited different behaviours in the same object. So the different perceptions of the same object are in fact compatible, save for the exaggerate generalization (eduction), unconsciously made in the absence of correcting phenomena, thus making the statements unnecessarily incompatible.

3. Retroduction (Y)

The solution is that both observers retroduce their statements, by adding nuances or limiting conditions, making an integration possible.

We postulate that A ¿ B, and we retroduce A and B to A# and B# by

   Y(A) = A#  and  Y(B) = B#

4. Combination (+)

At this point an integration, now nothing more than a simple combination, will be possible:

   W (A, B) =  {A#B#}

To perform this integration, several methods seem useful:

- Each observer can be placed in the situation of the other observer, and discover that his statement needs some more nuance. - The observers can communicate their different approach to each other, believe each other, and by empathy understand the limits of their own experience, and make together an integrative hypothesis satisfying both of them. - One observer can accept the apparent contradictory statements as complementary, and try to formulate an integration.

5. Auxiliary methods

The intuitive integration probably will be inspired by analogies, and especially by analogies with fundamental features of reality described by the General Systems Theory, and assisted by inductive Logics.

In another article, several auxiliary tools to enhance intuitive integration, are described.

Primitive forms of Integrative Thinking

1. Introduction

If we consider the ways of thinking humans used in history, some difficult questions arise

- During Renaissance, the scientific method of thinking emerged, claiming that a hypothesis only could be accepted as "true" if experimental ebidence cam to support it. How do we explain that, before this time, so much exact science was developed, including Greek mathematics and science, Egyptian and Assyrian geometry, architecture and astronomy. How could, ironically, such a inexact way of thinking, typical for the so-called Dark Middle Ages, develop the laws of exact scientific reasoning?

- What's the difference between Aristotelian dualism and Cartesian dualism?

- Was thinking with revelated insight really so naive and so stupid?

These questions could perhaps receive a beginning of an answer with the following considerations.

2. Intuition and "Revelation" as a primitive form of integration

One could perhaps consider that those "primitive", "unscientific" forms of thinking were in fact kinds of integrative thinking. The most important condition for integrative thinking, i.e. a general knowledge of multiple fields of human experience, was fulfilled. The ancient philosphers, unless nowadays scientists, appeared to be experienced in many diverse "sciences", ranging from mathematics to architecture and the art of war making, from music to medicine, passing through law, politics and astronomy, all in one person. The notion of homo universalis,[3] i.e. someone who knows "everything", was a high ranking qualification until the 17th and even the 18th century. Blaise Pascal (1623-62) is renown as the "last" homo universalis, although I should tend to qualify Teilhard as a modern homo universalis.

This very general, universal intellectual development is a fertile source for integrative thinking. From such a diversified experience and knowledge, the philosopher-scientist tries to formulate for himself hypotheses that fit with his experiences. The control for the validity of such a hypothesis is his intuitive certitude that all important data are explained. The same phenomenon probably occurs with a successful artist: he "feels" that his creations are "right", i.e. an intregration between a series of good separate ideas.

The step from such an intuition towards the honest conviction that one is enlighted by divine revelation, is not far.

The thinking error is not that one conceives such intuitive integartions as plausible, but as absolutely true, because God can't lie.

3. The scientific method of Pierre Teilhard de Chardin

The notion of thought or consciousness moving along a continuum of ever increasing plausibility seems to be compatible with Teilhard de Chardin's view that thought or consciousness gropes its way forward from one approximate conception of reality to another with, on average, later cognitional approximations being more accurate that earlier ones. In this regard, the French Jesuit writes: 'Consciousness, we know, does no more than grope its way forward, one approximation following upon another.' [4] And elsewhere, in a not dissimilar vein, he remarks that 'the history of the living world can be summarised as the elaboration of ever more perfect eyes within a cosmos in which there is always something more to be seen.' [5] Whether these eyes are those of the body or of the mind, their function is always 'to try to see more and better' [6]. So, Teilhard, here, does seem to be, at least in part, talking about consciousness at the thinking level, ever groping it's way, by means of increasingly plausible cognitions, away from falsity towards truth.

Hence I believe that Teilhard was, in large measure, an integrative thinker and theoriser. In this connection, in an essay of his, we read:

'What I wish to offer here is the outcome of my own thinking, expressed in a simple and clarified form so that everyone may be able to understand it without ambiguity, and may criticise and (this is my great hope) correct and amplify it.' [7]

So, to all appearances, the French Jesuit was open to having his outlook, on an ongoing basis, criticised, corrected and amplified with a view to having it continuously nudged forward along the plausibility continuum in the hope that it would ever move closer and closer to the truth.


   I think that, (1) if we consider revelation not as a direct intervention of a Superbeing into the natural evolution, but as a message that can be "read" in nature and reality because it was there since the very moment of Creation, and (2) if we consider integrative thinking, including its primitive forms intuition and "feeling a revelation" as yielding plausibility in stead of absolute truth, we can still trust in integration.


   [1] Roose, K., 1980, Ontwerp voor een Integratieve Psychologie, Gent.
   [2] Roose, K. & Van Brandt, B., 1985, Het geheim van het geluk, Kluwer, Antwerpen-Deventer
   [3] Beckers, Danny, Pieter Nieuwland (1764-1794): natural philosopher, mathematician, and poet"; mathematical societies in the Netherlands and the ideal of the Homo Universalis" De Achttiende Eeuw, 33, 1 (2001): 3-20
   [4] P. Teilhard de Chardin, 'The Evolution of Chastity', in 'Toward the Future' (Harvest Book, 1975), p. 60.
   [5] P. Teilhard de Chardin, 'The Phenomenon of Man' (Fountain Books, 1977), p. 35.
   [6] P. Teilhard de Chardin, 'Phenomenon', p. 35.
   [7] P. Teilhard de Chardin, 'The New Spirit', in 'The Future of Man' (Harper & Row, 1969), p. 85