Pauli spin matrices

From Citizendium
Revision as of 19:51, 22 August 2007 by imported>Michael Hardy (spacing)
Jump to navigation Jump to search

The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:


Algebraic properties

For i = 1, 2, 3:

Commutation relations

The Pauli matrices obey the following commutation and anticommutation relations:

where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.

The above two relations can be summarized as:

.