Revision as of 10:43, 25 April 2007 by imported>Charles Blackham
The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2x2 Hermitian matrices and for the complex Hilbert spaces of all 2x2 matrices. They are usually denoted:
![{\displaystyle \sigma _{x}={\begin{pmatrix}0&1\\1&0\end{pmatrix}},\sigma _{y}={\begin{pmatrix}0&-{\mathit {i}}\\{\mathit {i}}&0\end{pmatrix}},\sigma _{z}={\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db62b97861ffcd7e41de0c115723efe1fbbf51d4)
Algebraic Properties
![{\displaystyle \sigma _{x}^{2}=\sigma _{y}^{2}=\sigma _{z}^{2}=I}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0fb3b09d66bfac21c67ba2302f43b37157c1ff85)
For i=1,2,3:
![{\displaystyle det(\sigma _{i})=-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b6b0627b5bfcdc5f3b17989ab886af18d11fe72a)
![{\displaystyle Tr(\sigma _{i})=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a06432bbf5c7d422ce01d5c0aa726a7419cbea1)
![{\displaystyle eigenvalues=\pm 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c991930f87db6febc4f225bfd997b70ccbc1ab3)
Commutation relations
![{\displaystyle \sigma _{1}\sigma _{2}=i\sigma _{3}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f14a48c2491aa6784a709e23541bfd11f2e3fa7)
![{\displaystyle \sigma _{3}\sigma _{1}=i\sigma _{2}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6a9de5c8ab1b7dfdb8d6225eb27c9fc254d5e0c)
![{\displaystyle \sigma _{2}\sigma _{3}=i\sigma _{1}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb2091f6c488d21063eb945309b3c784a64e925)
![{\displaystyle \sigma _{i}\sigma _{j}=-\sigma _{j}\sigma _{i}{\mbox{ for }}i\neq j\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/985a18c9f7bbb56e4775a22dfa9cd7115c7d4c05)
The Pauli matrices obey the following commutation and anticommutation relations:
![{\displaystyle {\begin{matrix}[\sigma _{i},\sigma _{j}]&=&2i\,\varepsilon _{ijk}\,\sigma _{k}\\[1ex]\{\sigma _{i},\sigma _{j}\}&=&2\delta _{ij}\cdot I\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/450cfd37e7d4f2865b026fdc3b145dbdb9be1d0b)
- where
is the Levi-Civita symbol,
is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as:
.